

Sincroscópio de verificação tipo CSQ-3

4189340263L (BR)

- Sincroscópio multifuncional de precisão a LED
- Programação fácil por meio de botões de pressão de todos os pontos de operação
- Extrema segurança ao usuário
- Alta imunidade a distorção de harmônicas
- Funcionalidade 'dead bus'
- Versão especial para aplicações marítimas

CE

DEIF A/S Frisenborgvej 33, DK-7800 Skive Dinamarca Tel.: (+45) 9614 9614 Fax: (+45) 9614 9615 E-mail: deif@deif.com

Índice

e do ULe do ul.	
2. Sumário da aplicação e da funcionalidade	3
3. Operação do display, botões de pressão e dos LEDs	7
4. Lista dos terminais	
5. Diagramas da fiação	12
6. Colocação em operação	13
7. Dados técnicos	13
8. Dimensões	16
9. Especificações do pedido	16
Exemplo de uma especificação de pedido do CSQ-3	16
Apêndice 1: Configuração e parâmetros para sincronização	17
Configurações	17
Orientações para configurar o CSQ-3	19
Representação visual dos parâmetros	19

Advertências, informações legais e notas para a lista de marcação-CE e do UL

Este manual fornece orientações gerais sobre como instalar e operar o CSQ-3. A instalação e operação do CSQ-3 exige o trabalho com níveis de correntes e tensões perigosas. Portanto, estas atividades devem ser executadas somente por pessoal qualificado. A DEIF A/S não assume nenhuma responsabilidade pela instalação ou operação do equipamento. Se houver qualquer dúvida sobre como instalar ou operar o sistema no qual o CSQ-3 está efetuando medições, a empresa responsável pela instalação ou operação deve ser consultada.

O CSQ-3 recebe a marca-CE, com relação às diretrizes de EMC, para ambientes residenciais, comerciais e indústria leve, além de ambientes industriais. Isto cobre todos os tipos de ambientes onde o CSQ-3 pode ser normalmente utilizado.

O CSQ-3 recebe a marca-CE, com relação à diretriz de baixa tensão até 600 V, tensão de fase para terra, categoria instalação (categoria sobretensão) III e grau de poluição 2.

O CSQ-3 pode ser entregue com listagem UL. Consulte a seção "Dados técnicos" para informações sobre instalação, conforme requerido pelo UL.

Este pacote contém os seguintes itens:

- Unidade de sincroscópio de verificação CSQ-3
- Manual do usuário
- Duas braçadeiras de fixação
- Uma conexão plugável (montada na unidade)
- Cabo para saída de status do sistema (somente para a versão marítima)

2. Sumário da aplicação e da funcionalidade

O sincroscópio de verificação CSQ-3 é uma unidade de sincronização baseada em microprocessador, que fornece medição de todos os valores relevantes, para sincronizar um gerador com uma rede (barramento do bus). Ele é utilizado em qualquer tipo de instalação onde a sincronização manual ou semi-automática é necessária.

No CSQ-3, é possível ajustar os seguintes requisitos de sincronização: A diferença de tensão entre GEN e BB, o tamanho da janela de fase e a largura do pulso de sincronização.

Além disso, há uma indicação de 'U_{GEN} MUITO ALTA' ou 'U_{GEN} MUITO BAIXA' (LEDs vermelhos), diferença de fase dentro da janel predefinida ' ϕ OK' (LED amarelo) e, finalmente, a saída de sincronismo ativa, 'SYNC.' (LED verde).

Display/leitura

A unidade mede as duas tensões de entrada: Gerador (GEN) e barramento do bus (BB), respectivamente. A diferença de fase, desde o ponto de cruzamento do zero do GEN até o ponto de cruzamento do zero do BB, é calculada pelo processador e é exibido no círculo de LEDs, que consiste de 36 LEDs vermelhos.

Os LEDs vermelhos acendem apenas um por vez e a sua posição indica a diferença de fase entre o GEN e o BB. O LED aceso simula a extremidade da agulha de um instrumento indicador analógico. Se o LED estiver aceso na posição de 12 horas, a diferença de fase é 0 graus. Na posição das 6 horas, 180 graus, etc. Com os 36 LEDs a resolução é de 10 graus.

O movimento da posição do LED aceso indica a diferença de frequência entre o GEN e o BB. Se a indicação estiver girando no sentido horário (muito rápida), a frequência do GEN está muito alta em relação à frequência do BB. Se a indicação estiver girando no sentido anti-horário, a relação está contrária. A velocidade do movimento revela a diferença de frequência. Quanto mais rápido for o movimento, maior a diferença de frequência, p.ex., 1 rotação por segundo = 1 Hz. Se a frequência do BB for 50 Hz e a rotação for para a direita, a frequência do GEN será 51 Hz, neste exemplo.

Se a diferença de frequência, entre o GEN e o BB, estiver se tornando muito grande (>3 Hz), o movimento circular para e um LED será aceso, na marca 'muito rápido' ou 'muito lento', dependendo da direção em que a frequência do GEN tiver de ser ajustada.

Sincronização normal

A unidade calcula, automaticamente, os parâmetros de sincronização, para verificar se há o espaço necessário para a sincronização na janela de fase predefinida. Estes cálculos comparam a diferença de frequência com t_R e o tamanho da janela de fase. Quando o t_R for programado com ∞ , o t_d pode ser programado pelo usuário e é, então, incluído nos cálculos, em vez do t_R .

Se a janela do $\Delta \phi$ for programada simetricamente, tanto a sincronização da subfrequência quanto a sincronização de sobrefrequência são possíveis.

Sincronização sub e sobre frequência

Quando a janela do $\Delta \phi$ for programada assimetricamente, a funcionalidade a seguir é possível:

Se a janela do $\Delta \phi$ for programada assimetricamente com um valor $\Delta \phi$ mais positivo que negativo, somente a sincronização com a entrada do gerador em frequência menor que a da entrada do barramento do bus é possível (sincronização de subfrequência).

Se a janela do $\Delta \phi$ for programada assimetricamente com um valor $\Delta \phi$ menos positivo que negativo, somente a sincronização com a entrada do gerador em frequência maior que a da entrada do barramento do bus é possível (sincronização de sobrefrequência).

Pág. 4 de 22 Tel.: (+45) 9614 9614 • Fax: (+45) 9614 9615 • E-mail: deif@deif.com

Nota:

Esta função não está ativa com o t_R programado em ∞.

Sincronização de 'dead bus'

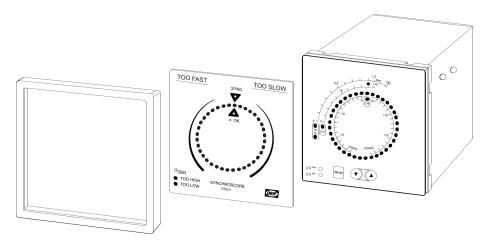
Quando a função 'dead bus' for programada, o relé de sincronização será ativado e o LED verde (SYNC) acenderá, quando a tensão do barramento do bus estiver abaixo do nível predefinido do barramento do 'dead bus' e a tensão do GEN exceder 80% do valor nominal.

Observe que, quando a tensão na rede foi restaurada, o CSQ-3 permanecerá na função do 'dead bus' durante um intervalo de 5 segundos.

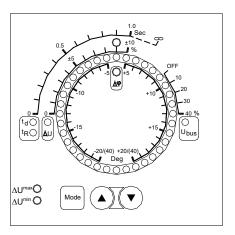
Reset da energização

A unidade irá operar quando a tensão do GEN exceder 80% do valor nominal. Abaixo deste nível, não será conseguida nenhuma funcionalidade.

μSaída da supervisão P


Devido às demandas das sociedades de classificação (GL), uma saída especial do acoplador óptico foi adicionada à versão marítima.

A partir desta saída é possível supervisionar o microprocessador interno (μP).


Se ocorrer um erro, a saída muda de estado de baixa para um estado de alta impedância (saída de coletor aberto).

3. Operação do display, botões de pressão e dos LEDs

Para obter acesso às configurações, remova a armação frontal e a lâmina frontal.

O CSQ-3 pode ser operado de dois modos diferentes: 'Modo normal' e 'modo configuração'. O modo normal é utilizado para exibir valores de medição, e o modo configuração para visualizar as configurações ou para alterá-las com a funcionalidade desejada.

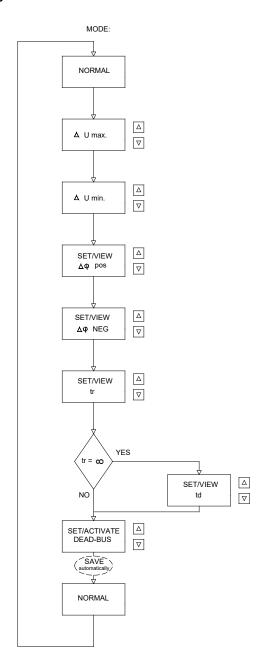
Pág. 6 de 22 Tel.: (+45) 9614 9614 • Fax: (+45) 9614 9615 • E-mail: deif@deif.com

3.1 LEDs

O CSQ-3 tem os seguintes LEDs na sua face, mostrando informações operacionais diferentes.

LEDs na face principal (modo normal):

LED	Cor	Função
Círculo	Vermelha	O LED aceso no círculo mostra a diferença de fase entre o GEN e o BARRAMENTO DO BUS
SYNC	Verde	Todos os parâmetros de sinc. predefinidos estão OK, e
		o relé de saída está ativado.
φ ΟΚ	Amarela	A diferença de fase entre o GEN e o BARRAMENTO
'		DO BUS está dentro da janela predefinida
Ugen	Vermelha	A diferença de tensão entre o GEN e o BARRAMENTO
TOO HIGH		DO BUS está fora da faixa predefinida. U _{GEN} está muito
(Muito Alta)		alta
U _{GEN}	Vermelha	A diferença de tensão entre o GEN e o BARRAMENTO
TOO LOW		DO BUS está fora da faixa predefinida. U _{GEN} está muito
(Muito Baixa)		baixa


LEDs na face secundária (modo configuração):

LED	Cor	Função
Círculo	Vermelha	As partes do círculo são usadas como escalas para as configurações diferentes.
Δφ	Amarela	Mostra que a escala do Δφ está ativa
t _d	Amarela	Mostra que a escala do t_d está ativa. Observe que o t_d torna-se ativo somente com o t_R programado em ∞
t _R	Amarela	Mostra que a escala do t _R está ativa
ΔU	Amarela	Mostra que a escala do ΔU está ativa
Ubus	Amarela	Mostra que a escala do U _{bus} ('dead bus') está ativa

Para informações adicionais sobre as configurações, consulte o apêndice 1.

3.2 Configurações

Pág. 8 de 22 Tel.: (+45) 9614 9614 • Fax: (+45) 9614 9615 • E-mail: deif@deif.com

<u>Operação</u>

A operação ocorre através da lâmina secundária, acessível quando a lâmina principal/armação frontal é removida. A operação ocorre por meio de 3 botões: Mode (articulado), seta para cima (▲) e seta para baixo (▼).

Controle das configurações

O botão mode é mantido pressionado para baixo durante cerca de 2-3 segundos, para obter o modo da configuração. Isto é confirmado pelo fato de que o LED é aceso na escala ΔU e que o parâmetro da ΔU máx. pode ser lido na escala de equiparação. Com os botões Δ e ∇ a configuração pode ser alterada.

Para cada aperto subsequente do botão mode ocorre uma alteração no parâmetro seguinte. Os parâmetros podem ser lidos e alterados de um modo correspondente. Quando o botão mode é pressionado, depois do último parâmetro, ele retorna ao modo normal.

Ao sair do último menu de configuração, o círculo do LED 'gira' para indicar que a configuração atual foi salva automaticamente.

Observe que a janela predefinida, ΔU e $\Delta \phi$, está dividida em duas configurações separadas, tornando possível a configuração assimétrica destes parâmetros.

Observe, também, que se as configurações forem alteradas acidentalmente, estas serão salvas quando sair do modo configuração.

Alteração da faixa de $\Delta \phi$

A faixa normal do $\Delta \varphi$ é de -20°...-5° e 5°...20° em passos de 1°.

Isto pode ser alterado para -40°...-10° e 10°...40° em passos de 2°.

Desça até o ponto 20° com o botão de seta para baixo. Enquanto estiver pressionando o botão de seta para baixo, pressione o botão de seta para cima e a escala, então, irá alterar de faixa normal para a escala 2 x faixa normal. Pressione o botão de seta para cima, para voltar à faixa normal. Enquanto estiver pressionando o botão de seta para cima, pressione o botão de seta para baixo e a escala, então, irá alterar de 2 x faixa normal para a escala da faixa normal. Observe que o modo 2 x faixa normal é indicado no círculo de LED, pela ativação de 2 LEDs cada vez que o $\Delta \phi$ é modificado.

Configurações de fábrica

Quando o produto é entregue pela fábrica, as seguintes configurações básicas estarão programadas:

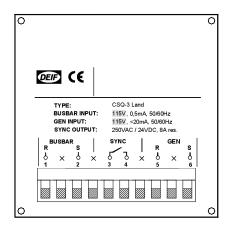
ΔU:	5% de ±U _{BB}
t _R :	0,5 s
Δφ:	±10°
'Dead bus':	OFF (Desligada)

Resgate das configurações de fábrica

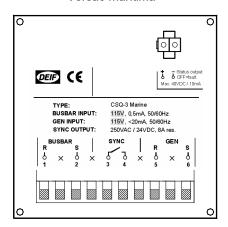
Aperte os dois botões de seta simultaneamente. Enquanto estiver fazendo isso, mantenha aperte e mantenha o botão de mode apertado, durante aproximadamente 5 segundos. Em seguida, o círculo de LED acenderá e irá girar para indicar que as configurações de fábrica foram resgatadas.

4. Lista dos terminais

4.1 Visão geral dos terminais


Terminal no.	Símbolo do sinal	Nome do sinal
1	R (L1)	Tensão do
		barramento do bus
	х	Não utilizado
2	S (L2)	Tensão do
		barramento do bus
	х	Não utilizado
3	SYNC	Saída do relé
4	SYNC	Saída do relé
	х	Não utilizado
5	R (L1)	Tensão do gerador
	Х	Não utilizado
6	S (L2)	Tensão do gerador

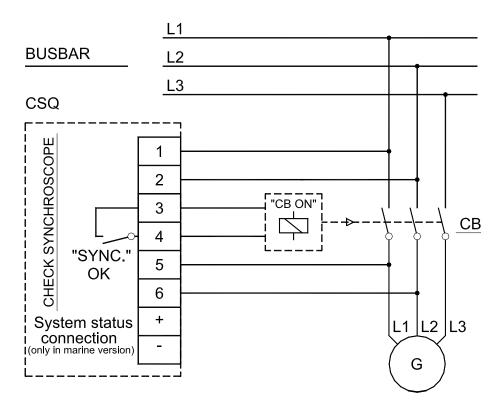
Somente na versão marítima:


Status de circuito	+ coletor aberto
desligado do sistema =	+ coletor aberto
falha	

Vista traseira da unidade:

Versão terrestre

Versão marítima



5. Diagramas da fiação

5.1 Conexões da entrada CA

Ao encomendar o CSQ-3, a faixa correta das entradas de tensão deve ser especificada. Elas devem estar conectadas, como mostrado abaixo (terminais não utilizados não são mostrados).

5.1.1 Diagrama de conexões

6. Colocação em operação

Antes de colocar em operação: Verifique, nas fases, a tensão correta e a

sequência correta da fase.

Advertência: Tensão Incorreta pode resultar no mau funciona-

mento e danos da unidade.

7. Dados técnicos

Precisão: $\pm 2^{\circ}$ (graus elétricos)

Resolução: 10° (36 LEDs)

Configurações, faixa: $\Delta \varphi$: $\pm 5...20^{\circ}$ em passos de 1° ou

±10...40° em passos de 2°

 $\begin{array}{lll} \Delta U\colon & \pm 1...10\% \text{ em passos de } 1\% \\ t_R\colon & 0...1 \text{ s em passos de } 0,1 \text{ s ou } \infty \\ t_d\colon & 0...1 \text{ s em passos de } 0,1 \text{ s} \end{array}$

Ajuste da U_{bus}: Desligado ou 4 níveis de supressão de ruído

('dead bus')

Diferença máx. de

frequência: Sem limite

Faixa de entrada (U_N): 100...127 V CA (115 V CA) ou

220...240 V CA (230 V CA) ou 380...415 V CA (415 V CA) ou 440...480 V CA (450 V CA) ou

Entrada do barramento

do bus: Carga: $2k\Omega/V$

Entrada do gerador: (Máx. 2 VA). Também alimenta a unidade

Tensão de entrada máx.: 1,2 x U_N, continuamente

Acima de 450 V: 1.1 x U_N, continuamente

 $2 \times U_N$ durante 10 s.

Faixa de frequência: 40...70 Hz (alimentação)

Contacto do relé: 1 SPST-NA-contacto

Valores nominais do

contacto do relé: Cargas resistivas: AC1:

(Placa de ouro liga de prata) DC1: 8A, 24 V CC Cargas indutivas: AC15: 3A, 250 V CA

Cargas indutivas: AC15: 3A, 250 V CA DC13: 3A, 24 V CC

(UL/cUL: Somente carga resistiva)

8A. 250 V CA

Vida mecânica única: 2 x 10⁷

Vida elétrica útil: 1 x 10⁵ (valor nominal)

Saída do acoplador

óptico:

Status do sistema desligado = falha

Saída NpN do acoplador óptico

Máx. 40 V, 10 mA

2 fios AWG 20 (vermelho/preto)

Comprimento 30 mm

(Somente na versão marítima)

Temperatura: -10...55°C (nominal)

-25...70°C (operacional) -40...70°C (armazenagem)

Deslocamento da

temperatura: Pontos de programação:

Máx. 0,2% do fundo de escala por 10°C

Isolação galvânica: Conforme a EN/IEC61010-1

Todos os grupos de entrada/saída para o terra: 3,75 kV Entre todos os grupos de entrada/saída: 3,75 kV Condições de teste: 50 Hz, 1 min

Clima: HSE, para DIN40040

EMC: Marcado com CE, de acordo com a EN50081-1/2,

EN50082-1/2 e IEC255-3

Conexões: Máx. 2,5 mm² (filamento singelo)

Máx. 1,5 mm² (multi-filamentar)

Materiais: Todas as peças plásticas são de material auto-extinguível

conforme a UL94 (V0)

Proteção: Frontal: IP52. Terminais: IP20

Conforme a IEC529 e EN60529

Aprovação do tipo: Para as aprovações atuais, consulte www.deif.com

(Válido somente para a versão marítima)

Listagem do UL: A pedido, o instrumento pode ser entregue de acordo com

a listagem do UL: UL508, E230690 T_{ambmax} 50 °C

Para ser usado em uma superfície plana do gabinete

metálico tipo 1 Fio: 24-12 AWG

Utilize somente condutores de cobre 60/75°C

Pág. 14 de 22 Tel.: (+45) 9614 9614 • Fax: (+45) 9614 9615 • E-mail: deif@deif.com

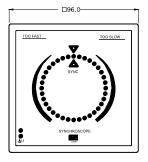
A desconexão da rede elétrica deve ser providenciada pelo instalador

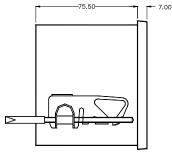
Torque do parafuso do terminal: 5-7 lb-pol.

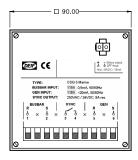
Instalado de acordo com a NEC (Estados Unidos) ou a

CEC (Canadá)

CUIDADO: Risco de choque elétrico. É possível que seja necessária mais de uma desconexão de rede elétrica para desenergizar o equipamento, antes de qualquer manutenção.


Dimensões: Consulte o desenho na seção 8


Corte do painel: $92 \times 92 \pm 1 \text{ mm}$


Peso: < 0,40 kg

8. Dimensões

Todas as dimensões em mm

9. Especificações do pedido

Tensão de entrada e tipo devem ser especificados, ao fazer o pedido do CSQ-3.

A especificação do pedido do CSQ-3 consiste de:

CSQ-3 - U_N - tipo

onde U_N e o tipo são:

Código	Função	Opcionais
U _N	Tensão de entrada	'115 V': (faixa da entrada 100127 V CA)
		'230 V': (faixa da entrada 220240 V CA)
		'415 V': (faixa da entrada 380415 V CA)
		'450 V': (faixa da entrada 440480 V CA)
Tipo		'Terrestre': Significa a versão terrestre sem a
		aprovação da GL. Esta é a versão padrão.
		'Marítima': Significa a versão marítima sem a
		aprovação da GL e equipada com uma saída
		adicional para supervisão.

Exemplo de uma especificação de pedido do CSQ-3

CSQ-3 - 415 V - Marítimo

Pág. 16 de 22 Tel.: (+45) 9614 9614 • Fax: (+45) 9614 9615 • E-mail: deif@deif.com

Apêndice 1: Configuração e parâmetros para sincronização

Configurações

ΔU

Neste ponto, é ajustada a diferença de tensão relativa permitida entre o GEN e o barramento do bus. A faixa de regulação é $\pm 1...10\%$ em passos de 1%. O ajuste é feito individualmente para a ΔU_{MIN} e para a ΔU_{MAX} , desse modo, o ajuste assimétrico torna-se possível. A configuração é feita de acordo com a seguinte fórmula:

$$\Delta U_{MIN}$$
, $\Delta U_{MAX} = \frac{(U_{GEN} - U_{BUSBAR}) \times 100}{U_{BUSBAR}}$

Se o valor predefinido for excedido, um dos dois LEDs da U_{GEN} emitirá luz vermelha, e a sincronização não é possível.

Se a tensão do gerador for muito baixa, o LED de U_{GEN} muito baixa acenderá. Se a tensão do gerador for muito alta, o LED de U_{GEN} muito alta acenderá. Se os dois LEDs da U_{GEN} acenderem simultaneamente, há um erro de sobretensão na entrada. Neste caso, desconecte a unidade e verifique o nível da tensão aplicada.

Δφ

Aqui, a janela da fase é ajustada, na qual a sincronização pode ocorrer. O ajuste inicia a partir de $\pm 5^{\circ}$ e a janela pode abrir simétrica ou assimetricamente em torno deste valor.

A faixa de regulação é de $-20^{\circ}...-5^{\circ}$ e de $5^{\circ}...20^{\circ}$, em passos de 1° ou $-40^{\circ}...-10^{\circ}$ e $10^{\circ}...40^{\circ}$, em passos de 2° .

t_R

Aqui é ajustada a largura do pulso do relé de sincronização.

A faixa de regulação é de 0...1 s. em passos de 0,1 s ou ∞ .

Esta função torna possível para ajustar o pulso de sincronização, de acordo com as demandas de disjuntores externos (tempo de fechamento).

Para finalidades especiais, também é possível ajustar o t_R em ∞ (infinito). Esta configuração fornecerá (depois que t_d expirar) um pulso de sincronização, enquanto as sequintes condições forem satisfeitas:

- A fase está contida na janela de fase
- Tensão > 70% da U_{NOMINAL}

td

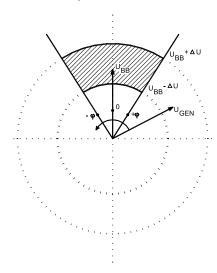
Aqui ajusta-se o tempo no qual a diferença de fase deve estar contida na janela de sincronização predefinida, para permitir o SYNC. A faixa de regulação é de 0...1 s. em passos de 0,1 s.

 t_d somente estará ativado se o t_R estiver programado em ∞ .

'Dead bus'

A possibilidade de fechar o disjuntor, ainda que a tensão do barramento do bus esteja ausente. Há um ajuste extre, U_{BUS}, onde o nível do barramento do 'dead bus' pode ser programado. Esta facilidade torna possível a sincronização do 'dead bus', mesmo que haja ruído no barramento do bus. A faixa de regulação é desligada ou 10...40% da U_N em incrementos de 10%.

Configuração	Função U _{BUS} do 'dead bus'
OFF	Desativada
(Desligada)	
10	Ativada dentro da faixa 15-25% da tensão de gerador real > 70%
20	Ativada dentro da faixa 25-30% da tensão de gerador real > 70%
30	Ativada dentro da faixa 30-40% da tensão de gerador real > 70%
40	Ativada dentro da faixa 40-50% da tensão de gerador real > 70%


Observe que esta configuração é uma regulação incremental grosseira da supressão de ruído eventual, no barramento do bus. A escala 10-20-30-40 deve, portanto, ser considerada mais como uma supressão de ruído de 4 níveis do que uma configuração de medição precisa.

Observe que, quando a tensão na rede foi restaurada, o CSQ-3 permanecerá na função do 'dead bus' durante um intervalo de 5 segundos.

Orientações para configurar o CSQ-3

Representação visual dos parâmetros

A figura abaixo mostra os diferentes parâmetros:

Colocação em operação

Normalmente o t_R é ajustado de modo que ele iguale o tempo de fechamento dos disjuntores e $\Delta \phi$ -/ $\Delta \phi$ + para erro de sincronização máx. permitido.

Observe que o CSQ-3 calcula o espaço para o t_R (tempo de fechamento do disjuntor) dentro da janela $\Delta \phi$ escolhida na Δf real (frequência de escorregamento). conseqüentemente, o erro de sincronização máx. nunca excederá a janela $\Delta \phi$ escolhida.

Exemplo de cálculo

O tempo de fechamento do disjuntor é 200 ms, e o t_R é escolhido como 200 ms. A janela de fase é programada simetricamente em $\pm 10^\circ$ (graus elétricos). Em seguida, a Δf máx. pode ser calculada, utilizando a seguinte fórmula:

$$\Delta f = \frac{(\Delta \varphi -) + (\Delta \varphi +)}{360 \times t_R}$$

$$\Delta f = \frac{10 + 10}{360 \times 0.2} = 0.278 \text{ Hz}$$

O pulso do relé de sincronização não será emitido se Δf exceder 0,278 Hz.

<u>Cálculo do erro de sincronização real – não deve ser confundido com o erro de sincronização máx. que é determinado unicamente pela janela $\Delta \phi$ escolhida Os exemplos a seguir aplicam-se a situações onde t_R é programado na faixa de 0,1...1 s.</u>

Exemplo:

Com uma frequência de escorregamento (Δf) de 0,1 Hz, a fase muda com uma taxa de 36°/s. Se o $\Delta \phi$ estive programado para $\pm 10^\circ$ e o t_R estiver programado para 0,2 s. = tempo de fechamento do disjuntor, o erro de sincronização real pode ser calculado.

O instante em que a fase está dentro da janela de fase programada $(\Delta \phi)$, o relé do CSQ-3 é ativado na condição de que há espaço para o t_R escolhido, neste caso 0,2 s. Se Δf for muito grande, ela causará perda de espaço para o tempo t_R escolhido, dentro da janela $\Delta \phi$ escolhida.

Exemplo 1:

Com uma mudança de fase de $36^{\circ}/s$, a fase mudará 7.2° durante os 0.2 s. Isto significa que agora podemos calcular o deslocamento de fase no momento exato em que o disjuntor fecha. O $\Delta \phi$ é programado em -10° e +10°. O relé CSQ-3 será ativado -10° antes do topo (posição 12 horas), e depois de 7.2° que o disjuntor fechar, o que significa que o disjuntor fecha 10° - 7.2° = 2.8° antes do topo, ou seja, um erro de sincronização real de -2,8°. Ao aplicar a fórmula da página 17, o Δf máx., com as configurações mostradas, pode ser calculado para resultar em 0.277 Hz.

Exemplo 2:

Se assumirmos que a frequência de escorregamento no caso real é 0.2 Hz, a fase muda com uma taxa de 72° /s. Com uma mudança de fase de 72° /s, a fase mudará 14.4° durante 0.2 s, o que resulta em um erro de sincronização de 10° - 14.4° = -4.4° . O resultado negativo significa que o disjuntor fechou 4.4° depois do topo, ou seja, um erro de sincronização real de $+4.4^{\circ}$.

Exemplo 3:

O mesmo como nos exemplos 1 e 2, mas com uma frequência de escorregamento de 0,3 Hz = 108°/s. Em t_R = 0,2 s, a fase mudará 21,6°. Como a janela de $\Delta \phi$ está programada para $\pm 10^\circ$, o CSQ-3 calculará que não há mais espaço para um pulso de t_R de 0,2 s e, portanto, nenhum pulso de relé é emitido.

Fórmula geral para o que foi mencionado acima:

Erro de sincronização real = $(\Delta \varphi$ -) - 360 x Δf x tempo de fechamento do disjuntor (f_R).

Alternativamente, na freguência de escorregamento negativa:

Erro de sincronização real = $(\Delta \varphi$ -) - 360 x Δf x tempo de fechamento do disjuntor (t_R) .

Se o resultado for negativo, a sincronização ocorrerá depois do topo (0°) desde que haja espaço para t_R , dentro da janela $\Delta \phi$.

Se você desejar evitar a sincronização depois do topo, $\Delta \phi$ é programada assimetricamente. Na frequência de escorregamento positiva (Δf), como no exemplo mostrado, uma configuração de $\Delta \phi$ - a -10° e $\Delta \phi$ + a +5° resultaria no fato de que não seria possível uma sincronização maior que 5°, depois do topo.

A largura do pulso de relé t_R nunca pode ser programada com um valor menor que o tempo de fechamento do disjuntor, ao passo que o t_R pode ser programado com um valor maior caso você queira que a frequência de escorregamento máx. (Δf) seja menor, para limitar o avanço da corrente do disjuntor (os geradores) em conexão com a sincronização.

Exemplo:

Å luz dos exemplos acima mencionados, o t_R é alterado para 0,4 s. Com uma frequência de escorregamento (Δf) de 0,1 Hz = 36°/s e t_R = 0,4 s, a fase muda 14,4° durante 0,4 s. Se o $\Delta \phi$ for programado com $\pm 10^\circ$ o CSQ-3 calculará que há espaço para t_R . Com esta configuração, o erro de sincronização será idêntico ao erro de sincronização no exemplo 1 (-2,8°), uma vez que o tempo de fechamento do disjuntor é o mesmo (0,2 s). Mas agora a Δf máx. somente pode ser 0,138 Hz e não 0,277 Hz, como no exemplo 1. A frequência de escorregamento (Δf) máx. também pode ser controlada configurando a $\Delta \phi$ diferentemente. Se o $\Delta \phi$ foi programado com $\pm 5^\circ$, em vez de $\pm 10^\circ$, a Δf máx. seria 0,138 Hz em t_R = 0,2 s. Com esta configuração e uma Δf de 0,1 Hz, o erro de sincronização será +2,2°. Observe que agora o disjuntor fecha 2,2° depois do topo, e não 2,8° antes do topo, como no exemplo 1. A escolha da configuração deve ser baseada no conhecimento da instalação real, na qual o CSQ-3 é aplicado. Mas os exemplos servem para mostrar que o t_R e $\Delta \phi$ estão indissociavelmente conectados e influenciam os mesmos parâmetros, mas com resultados diferentes quanto ao cálculo do erro de sincronização real.

Se o t_R for programado com infinito (∞) a Δf máx. permissível não pode mais ser controlada por meio de t_R . Quando o t_R for programado com infinito, a configuração do t_d é automaticamente ativada. O t_R infinito é principalmente utilizado onde a aplicação do CSQ-3 é utilizada como supervisão de um sistema automático de sincronização ou em conexão com o fechamento de um disjuntor, onde se queira controlar a frequência, fase e tensão para que elas estejam dentro de determinados valores, antes do disjuntor ser fechado.

A configuração do t_d deve ser calculada a partir do $\Delta \phi$ e a Δf permissível máx. estimada.

$$t_d = \frac{(\Delta \phi -) + (\Delta \phi +)}{360 \times \Delta f}$$

Exemplo 1:

O $\Delta \phi$ é programado com $\pm 7^\circ$, e uma Δf máx. de 0,05 Hz, no momento da sincronização, é estimada como sendo permissível.

$$t_{d} = \frac{|-7| + 7}{360 \times 0.05}$$

$$t_d = 0.77 s \sim 0.8 s$$

Observe que, quando o t_R for programado com infinito (∞) , o pulso de sincronização (o contacto do relé CSQ-3) é interrompido no momento em que a fase estiver fora da janela de fase programada. Quando o t_d do temporizador inicia, no momento em que a fase se encontra dentro da janela de fase programada $\Delta \phi$ e deve expirar no intervalo em que a fase ainda se encontra dentro da janela de fase, antes que o pulso de sincronização seja emitido, significa que, no exemplo mostrado com uma Δf real de 0,049 Hz, o pulso de sincronização seria somente 18 ms. Para evitar a transmissão desse pulso de sincronização curto, o CSQ-3 executa um cálculo com base na Δf e na janela de fase real, para dar lugar a um pulso de sincronização de no mínimo 100 ms. Com referência ao exemplo 1, os 100 ms devem ser subtraídos do t_d calculado, para permitir uma Δf máx. de 0,05 Hz.

Função em situações particulares:

Em conexão com o teste "de bancada", o CSQ-3 é normalmente conectado ao mesmo ponto de alimentação de modo que a frequência e a fase sejam idênticas, na entrada do gerador e na entrada do barramento do bus. Neste formulário de teste deve-se observar o seguinte:

A primeira vez que o CSQ-3 está conectado, o pulso de sincronização é emitido se a janela do $\Delta\phi$ estiver programada simétrica ou assimetricamente. Se apenas a entrada do barramento do bus for interrompida subseqüentemente (quando o CSQ-3 for alimentado com tensão auxiliar da entrada do gerador), o pulso de sincronização somente é emitido se a interrupção resultou no fato de que a janela $\Delta\phi$ foi deixada em conexão com a interrupção (ocorre se a interrupção resultar em um pulso de ruído).

Se o $\Delta \phi$ for programado assimetricamente de modo que somente, p.ex. **positivo** Δf , for aceito e a Δf mudar de sinal (sentido inverso), depois que a fase entre o gerador e o barramento do bus estiver dentro da janela de fase, o pulso de sincronização não é interrompido até que a janela $\Delta \phi$ seja deixada, mesmo se a Δf tiver mudado de sinal para **negativo** Δf .

Se a Δf mudou para o sentido de rotação correto, depois que a fase estiver dentro da janela de fase, o CSQ-3 calcula se há espaço para o t_R (o pulso de sincronização), e, nesse caso, o pulso de sincronização é emitido.

Erros e mudanças excluídas