AGC 150, ASC 150

Instruções de instalação

1. Introdução

•	
1.1 Sobre as instruções de instalação	3
1.1.1 Versão do software	4
1.2 Avisos e Segurança	4
1.3 Informações legais	5
2. Descrição do produto	
2.1 Tipos de controladores	7
3. Montagem	
3.1 Dimensões e peso	8
3.2 Ferramentas e materiais	
3.3 Instruções de montagem	9
4. Hardware	
4.1 Conexões na parte traseira	10
5. Fiação	
5.1 Visão geral sobre a conexão elétrica	14
5.1.1 Fiação típica para o controlador do gerador	14
5.1.2 Fiação típica para o controlador de rede elétrica	15
5.1.3 Fiação típica para o controlador BTB	16
5.1.4 Fiação típica para controlador independente	17
5.1.5 Fiação típica para controlador marinho independente	18
5.1.6 Fiação elétrica para controlador híbrido	20
5.1.7 Fiação típica para controlador de unidade do motor	21
5.1.8 Fiação típica para o controlador de armazenamento	22
5.1.9 Fiação típica para o controlador solar	23
5.1.10 Fiação típica para o controlador ATS	
5.1.11 Fiação típica para controlador PMS leve	27
5.1.12 Diretrizes de conexão elétrica - melhores práticas para aterramento	
5.2 Conexões em CA	29
5.2.1 4 – corrente	
5.2.2 Aterramento do transformador de corrente	
5.2.3 Fusíveis para medição de tensão	
5.2.4 Entradas analógicas	
5.3 Conexões em CC	
5.3.1 Entradas digitais	
5.3.2 Saídas digitais	
5.3.3 Fiação do disjuntor	
5.3.4 Alimentação e inicialização	
5.4 Comunicação	
5.4.1 Recomendação de cabo para RS-485 e barramento CAN	
5.4.2 Sistema de gerenciamento de energia do barramento CAN, CANshare e PMS lite	
5.4.3 Compartilhamento de carga digital de terceiros	
5.4.4 Comunicação do motor via CAN bus	
5.4.5 Modbus RS-485 (AGC/ASC é o servidor)	
5.4.6 Modbus RS-485 (ASC é o cliente)	41

1. Introdução

1.1 Sobre as instruções de instalação

Objetivo geral

Estas são as instruções de instalação do AGC 150 e do ASC 150 da DEIF. As instruções de instalação trazem informações para a correta instalação do controlador, com atenção principal sobre a instalação física do equipamento.

CAUTION

Leia as instruções

Antes de instalar o controlador, leia estas instruções para evitar ferimentos ao pessoal e danos ao equipamento.

A quem se destinam as instruções de instalação

As instruções de instalação se destinam, principalmente, ao pessoal que faz a montagem e conexão elétrica dos controladores. Pode ser útil para os designers consultar as Instruções de instalação, durante o desenvolvimento dos diagramas de conexão elétrica do sistemas; para os operadores, consultar as instruções de instalação pode ser útil durante a resolução de problemas.

Lista de documentação técnica

Documento	Índice
Informações sobre o produto	 Breve descrição Aplicativos do controlador Recursos e funções principais Dados técnicos Proteções Dimensões
Folha de dados	 Descrição geral Funções e recursos Aplicativos do controlador Tipos e versões de controladores Proteções Entradas e saídas Especificações técnicas
Manual do projetista	 Princípios Sequências, funções e proteções gerais do controlador Proteções e alarmes Configuração da CA e ajustes nominais Disjuntor e sincronização Regulação Características do hardware Comunicação
Instruções de instalação	 Ferramentas e materiais Montagem Conexão elétrica mínima para o controlador Informações e exemplos de fiação

Documento	Índice
Manual do operador	 Dispositivo controlador (botões e LEDs) Como operar o sistema Alarmes e registro de eventos (logs)
Tabelas do Modbus	 Lista de endereços de Modbus Endereços PLC Funções do controlador correspondente Descrições dos códigos de funções, grupos de funções
Desenhos	 Desenho CAD 2D, PDF 2D Arquivo STEP 3D, PDF 3D EPLAN

1.1.1 Versão do software

Este documento baseia-se no software AGC 150 versão 1.20.

1.2 Avisos e Segurança

Segurança durante a instalação e a operação

Quando você instalar e operar o equipamento, pode ter que trabalhar com correntes e tensões perigosas. A instalação somente deve ser realizada por pessoas autorizadas e que compreendam os riscos envolvidos no trabalho com equipamentos elétricos.

Correntes e tensões perigosas energizadas.

Não toque nos terminais, especialmente nas entradas de medição de corrente em CA e nos terminais de relés, pois isso pode causar ferimento e morte.

Perigos do transformador de corrente

Choque elétrico e arco elétrico

Risco de queimaduras e choque elétrico provenientes da alta tensão.

Curto circuito de todos os transformadores de correntes secundárias, antes da interrupção das conexões dos transformadores de corrente com o controlador.

Desativar os disjuntores

DANGER!

Desativar os disjuntores

O fechamento não intencional dos disjuntores pode provocar situações fatais e/ou perigosas.

Desconecte ou desative os disjuntores ANTES de conectar a alimentação do controlador. Não ative os disjuntores ANTES de a conexão elétrica e a operação do controladores terem sido totalmente testadas.

Desativar o arranque do motor

Arranques indesejados do motor

O arranque não intencional do motor pode provocar situações fatais e/ou perigosas.

Desconecte, desative ou bloqueie o arranque do motor (o mecanismo de arranque e a bobina de funcionamento) ANTES de conectar a alimentação do controlador. Não ative o arranque do motor ANTES de a conexão elétrica e a operação do controladores terem sido totalmente testadas.

UL/cUL Listado

A aceitabilidade da instalação é determinada como parte da montagem final.

Se estiver cabeado ao campo na aplicação final, você deve usar uma barreira física entre as conexões de cabeamento de baixa e alta tensão para garantir que os circuitos estejam separados.

Configurações de fábrica

O controlador é entregue pré-programado com uma série de configurações de fábrica. Esses ajustes se baseiam em valores típicos e podem não ser as corretas para o seu sistema. Portanto, antes de usar o controlador, verifique todos os parâmetros.

Descarga eletrostática

As descargas eletrostáticas podem danificar os terminais do controlador. Durante a instalação, proteja os terminais contra descargas eletrostáticas. Depois que o controlador estiver instalado e conectado, essas precauções já não serão mais necessárias.

Segurança dos dados

Para minimizar o risco de violações da segurança dos dados:

- Na medida do possível, evite expor os controladores e suas redes a redes públicas e à Internet.
- Utilize camadas de segurança como uma VPN para acesso remoto e instale mecanismos de firewall.
- Restrinja o acesso às pessoas autorizadas.

1.3 Informações legais

Equipamentos de outros fabricantes

A DEIF não se responsabiliza pela instalação ou operação de equipamentos de outros fabricantes, inclusive os **grupos geradores**. Em caso de dúvidas sobre a instalação e operação do grupo gerador, entre em contato com o **fabricante do grupo gerador**.

Garantia

NOTICE

Garantia

O controlador não deve ser aberto por pessoal não autorizado. Se aberto, a garantia será perdida.

Aviso legal

A DEIF A/S se reserva o direito de alterar o conteúdo deste documento sem aviso prévio.

A versão em inglês deste documento contém sempre as informações mais recentes e atualizadas sobre o produto. A DEIF não se responsabiliza pela acuidade das traduções. Além disso, as traduções podem não ser atualizadas ao mesmo tempo que o documento em inglês. Se houver discrepâncias, a versão em inglês prevalecerá.

Direitos autorais

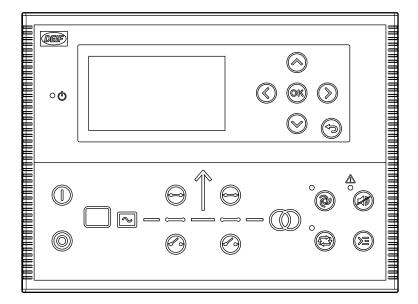
© Copyright DEIF A/S. Todos os direitos reservados.

2. Descrição do produto

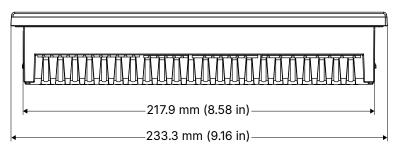
2.1 Tipos de controladores

Parâmetro	Configuração	Tipo de controlador	Software mínimo
	Gerador diesel (DG)	Controlador de gerador	S2
	Gerador diesel (DG)	Controlador gerador independente	S1
	Unidade de rede	Controlador da rede elétrica	S2
	Unidade de BTB	Controlador BTB	S2
	Unidade DG HYBRID	Controlador híbrido Genset-Solar	S2
	Unidade acionada a motor	Controlador acionado a motor	S1
	Unidade remota	Tela remota	Nenhuma
9101	Unidade de MOTOR DRIVE MARINE	Controlador da unidade do motor para uso marítimo	S1
	Unidade DG MARINE	Controlador de Genset independente para uso marítimo	S1
	Armazenamento ASC 150*	Controlador de armazenamento da bateria	S3
	ASC 150 Solar*	Controlador solar	S3
	Unidade ATS	Chave de transferência automática (transição aberta)	S1
	Unidade ATS	Chave de transferência automática (transição fechada)	S2
	DG PMS LITE	Controlador PMS Lite	S2

Pacotes de software e tipos de controladores


O pacote de software do controlador determina quais funções o controlador pode usar.


- S1 = Stand-alone
 - Você pode alterar o tipo de controlador para qualquer outro controlador que use um software S1.
- S2 = Core
- S3 = Extended
 - Você pode alterar o tipo de controlador para qualquer outro tipo de controlador*.
 - * Para mudar para um controlador ASC 150, o controlador deve ter a opção de sustentabilidade (S10).
- S4 = Premium
 - Você pode alterar o tipo de controlador para qualquer outro tipo de controlador*.
 - * Para mudar para um controlador ASC 150, o controlador deve ter a opção de sustentabilidade (S10).
 - Todas as funções são compatíveis.


Selecione o tipo de controlador em Configurações básicas > Configurações do controlador > Tipo.

3. Montagem

3.1 Dimensões e peso

Dimensões e peso	
Dimensões	Comprimento: 233,3 mm (9,16 pol.) Altura: 173,3 mm (6,82 pol.) Profundidade: 44,7 mm (1,76 pol.)
Recorte do painel	Comprimento: 218,5 mm (8,60 pol.) Altura: 158,5 mm (6,24 pol.) Tolerância: ± 0,3 mm (0,01 pol.)
Espessura máx. do painel	4,5 mm (0,18 pol.)
Montagem	Listado UL/cUL: Tipo - dispositivo completo, tipo aberto 1 Listado UL/cUL: Para utilização sobre uma superfície plana de um gabinete tipo 1
Peso	0,79 kg

3.2 Ferramentas e materiais

Ferramentas necessárias para montagem

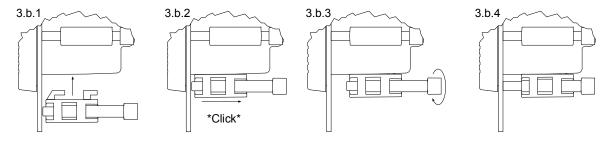
Ferramenta	Usada para
Equipamentos de segurança	Proteção pessoal, de acordo com os padrões e requisitos locais
Chave de fenda de ponta chata de 5 mm ou PH2	Aperte os grampos-sargento de fixação a um torque de 0,15 Nm (1,3 lb-pol)
Alicate de crimpar cabos, alicate de Crimpar Cabos e cortadores	Prepare a conexão elétrica e ajuste as abraçadeiras

NOTICE

Torque demais danifica os grampos-sargento e/ou o gabinete do controlador.

Durante a instalação, não utilize ferramentas elétricas.

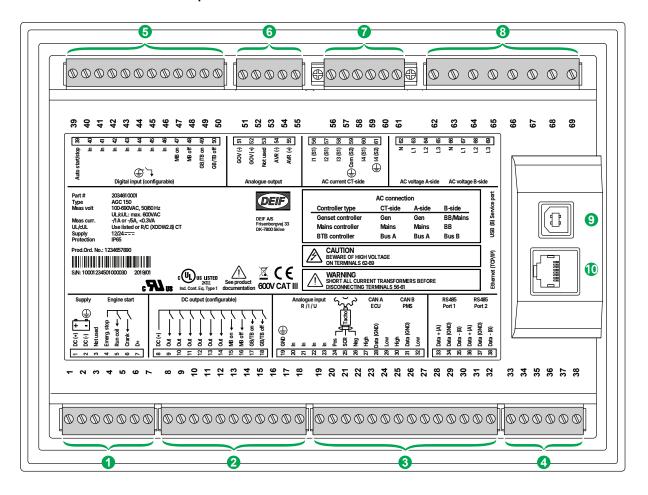
Materiais necessários para montagem e conexão elétrica


Materiais	Usada para
Quatro grampos-sargento	Montagem do controlador no painel frontal
Cabos e conectores	Como instalar a conexão elétrica de equipamentos de outros fabricantes aos terminais do controlador
Cabo Ethernet	Conexão da comunicação do controlador entre controladores e/ou sistemas externos
Abraçadeiras	Fixação da conexão elétrica e do cabo de Ethernet

3.3 Instruções de montagem

O controlador foi desenvolvido para ser montado na parte frontal do painel. Espessura máx. do painel: 4,5 mm (0,18 pol)

Corte do painel:


- Largura: 218,5 mm (8,60 pol.)
- Altura: 158,5 mm (6,24 pol.)
- Tolerância: ± 0,3 mm (0,01 pol.)
- 1. Insira o controlador no painel.
- 2. Instale os grampos sargento:

3. Aperte os grampos sargento a 0,2 Nm.

4. Hardware

4.1 Conexões na parte traseira

Plugue 1: alimentação/arranque do motor

Terminal	Texto	Função	Dados técnicos
1	Alimentação, CC (+)	+12/24 V CC	65 0 36 1/ 00
2	Alimentação, CC (-)	0 V CC	6,5 a 36 V CC
3	Não utilizado	-	-
4	Parada de emergência	Entrada digital e alimentação para os terminais 5, 6 e 7	
5	Bobina atuadora	Configurável	Máx. 3 A
6	Arranque	Configurável	Máx. 3 A
7	D+		Consulte a data sheet para obter informações técnicas

Plugue 2: Saída em CC

Terminal	Texto	Função	Dados técnicos
8	Alimentação na saída digital, CC (+)		
9	Out (saída)	Configurável	Máx. 500 mA
10	Out (saída)	Configurável	Máx. 500 mA
11	Out (saída)	Configurável	Máx. 500 mA

Terminal	Texto	Função	Dados técnicos
12	Out (saída)	Configurável	Máx. 500 mA
13	Out (saída)	Configurável	Máx. 500 mA
14	Out (saída)	Configurável	Máx. 500 mA
15	Disjuntor da rede (MB) ON (ligado)	MB/TB fechado Configurável (a depender da aplicação)	Máx. 500 mA
16	Disjuntor da rede (MB) OFF (desligado)	MB/TB aberto Configurável (a depender da aplicação)	Máx. 500 mA
17	GB (disjuntor do gerador)/ TB (disjuntor Tie) ON (ligado)	GB/TB/BTB/ESB/PVB fechado Configurável (a depender da aplicação)	Máx. 500 mA
18	GB (disjuntor do gerador)/ TB (disjuntor Tie) OFF (desligado)	GB/TB/BTB/ESB/PVB aberto Configurável (a depender da aplicação)	Máx. 500 mA

Pluque 3: Entrada analógica (MPU)/CANbus

Terminal	Texto	Função	Dados técnicos
19	Terra (GND)	Comum	Deve ser aterrada ao terra (GND) do motor
20	pol	Entrada analógica R/I/U	
21	pol	Entrada analógica R/I/U	
22	pol	Entrada analógica R/I/U	
23	pol	Entrada analógica R/I/U	
24	Positivo	Tacômetro	
25	SCR	Tacômetro	
26	Negativo	Tacômetro	
27	Alta	Unidade de controle de motor (ECU), CAN A	Não isolado
28	Dados (GND (Filtro de densidade Neutra))	Unidade de controle de motor (ECU), CAN A	Não isolado
29	Baixa	Unidade de controle de motor (ECU), CAN A	Não isolado
30	Alta	Sistema de gerenciamento de potência (PMS), CAN B	Isolado
31	Dados (GND (Filtro de densidade Neutra))	Sistema de gerenciamento de potência (PMS), CAN B	Isolado
32	Baixa	Sistema de gerenciamento de potência (PMS), CAN B	Isolado

Plugue 4: RS-485

Terminal	Texto	Função	Dados técnicos
33	Dados + (A)	RS-485-1	Isolado
34	Dados (GND (Filtro de densidade Neutra))	RS-485-1	Isolado
35	Dados - (B)	RS-485-1	Isolado

Terminal	Texto	Função	Dados técnicos
36	Dados + (A)	RS-485-2	Não isolado
37	Dados do terra (GND)	RS-485-2	Não isolado
38	Dados - (B)	RS-485-2	Não isolado

Plugue 5: Entrada digital

Terminal	Texto	Função	Dados técnicos
39	pol	Configurável	Somente em comutação negativa, < 100 Ω
40	pol	Configurável	Somente em comutação negativa, < 100 Ω
41	pol	Configurável	Somente em comutação negativa, < 100 Ω
42	pol	Configurável	Somente em comutação negativa, < 100 Ω
43	pol	Configurável	Somente em comutação negativa, < 100 Ω
44	pol	Configurável	Somente em comutação negativa, < 100 Ω
45	pol	Configurável	Somente em comutação negativa, < 100 Ω
46	pol	Configurável	Somente em comutação negativa, < 100 Ω
47	Disjuntor da rede (MB) ON (ligado)	MB/TB fechado* Configurável (a depender da aplicação)	Somente em comutação negativa, < 100 Ω
48	Disjuntor da rede (MB) OFF (desligado)	MB/TB aberto* Configurável (a depender da aplicação)	Somente em comutação negativa, < 100 Ω
49	GB (disjuntor do gerador)/ TB (disjuntor Tie) ON (ligado)	GB/TB/BTB/ESB/PVB fechado* Configurável (a depender da aplicação)	Somente em comutação negativa, < 100 Ω
50	GB (disjuntor do gerador)/ TB (disjuntor Tie) OFF (desligado)	GB/TB/BTB/ESB/PVB aberto* Configurável (a depender da aplicação)	Somente em comutação negativa, < 100 Ω

NOTE * Como alternativa, se você precisar de um monitoramento de ruptura de fio, você pode usar a multientrada 20/21/22/23.

Plugue 6: Saída analógica

Terminal	Texto	Função	Dados técnicos
51	GOV (-)	Tensão ou Saída de PWM (Modulação de amplitude de pulso)	Isolado
52	GOV (+)	Tensão ou Saída de PWM (Modulação de amplitude de pulso)	Isolado
53	Não utilizado	-	-

Terminal	Texto	Função	Dados técnicos
54	Regulador Automático de Tensão (AVR) (-)	Saída de tensão	Isolado
55	Regulador Automático de Tensão (AVR) (+)	Saída de tensão	Isolado

Plugue 7: Corrente CA - lado do transformador de corrente (TC)

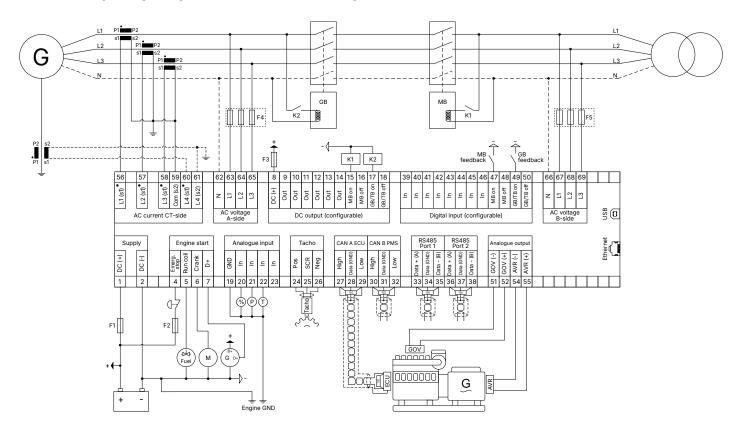
Terminal	Texto	Função	Dados técnicos
56	L1 (S1)		
57	L2 (S1)		
58	L3 (S1)		
59	Com (S2)	Comum	Deve ser conectado ao GND (Filtro de densidade Neutra) da estrutura
60	L4 (S1)	Potência do Neutro, do Terra ou da Rede elétrica/Ligação/Barramento	
61	L4 (S2)	Potência do Neutro, do Terra ou da Rede elétrica/Ligação/Barramento	Deve ser conectado ao GND (Filtro de densidade Neutra) da estrutura

Plugue 8: Medição de tensão em CA

Terminal	Texto	Função	Dados técnicos
62	N	Lado A	
63	L1	Lado A	
64	L2	Lado A	
65	L3	Lado A	
66	N	Lado B	
67	L1	Lado B	
68	L2	Lado B	
69	L3	Lado B	

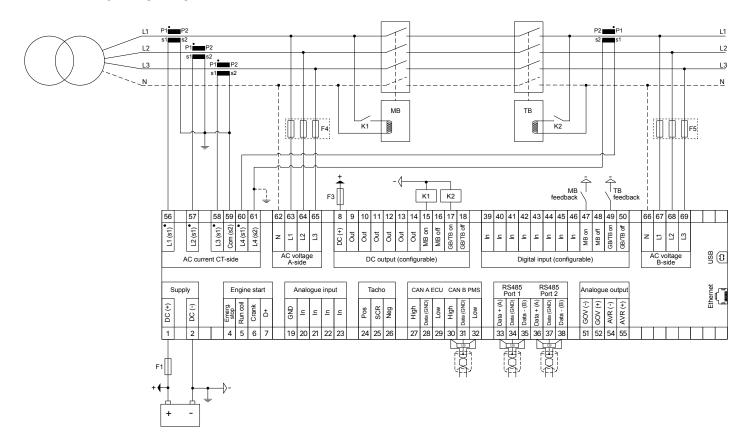
Plugue 9: Conexão ao PC

Descrição	Função	Dados técnicos
Conexão USB	Porta de serviço	USB B

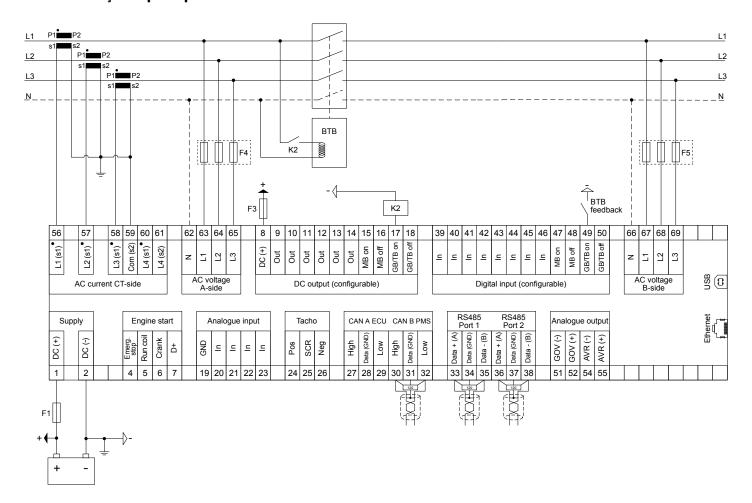

Plugue 10: Conexão via Modbus

Descrição	Função	Dados técnicos
RJ45	Conexão TCP/IP Modbus	Ethernet

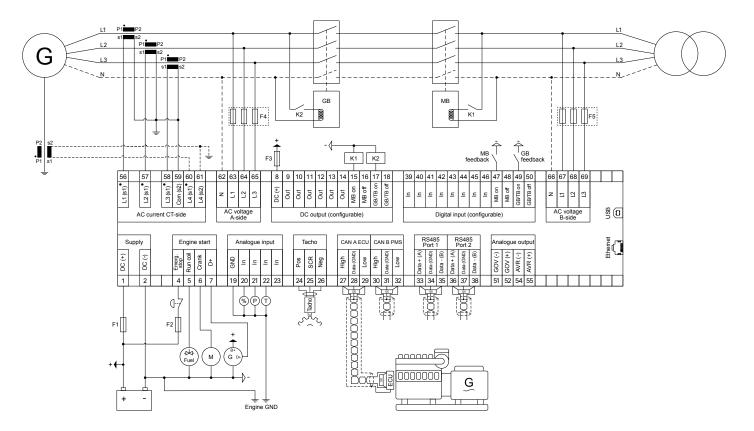
5. Fiação


5.1 Visão geral sobre a conexão elétrica

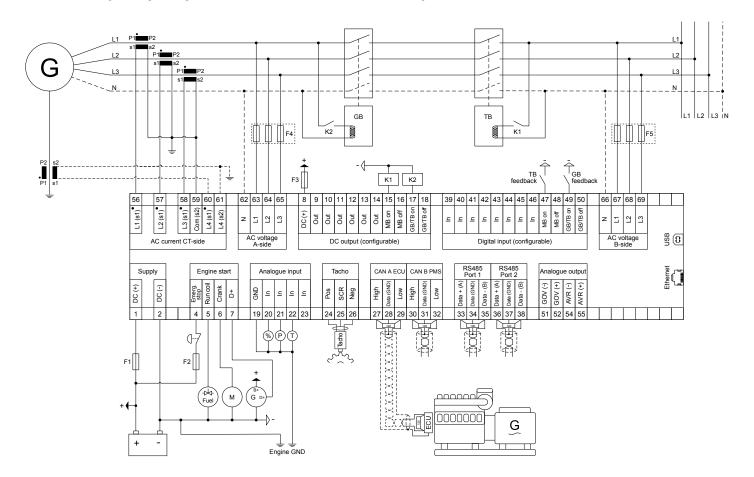
5.1.1 Fiação típica para o controlador do gerador


- F1: 2 A DC máx. fusível de atraso de tempo/MCB, curva c
- F2: 6 A AC máx. fusível de atraso de tempo/MCB, curva c
- F3: 4 A DC máx. fusível de atraso de tempo/MCB, curva b
- F4, F5: 2 A AC máx. fusível de atraso de tempo/MCB, curva c

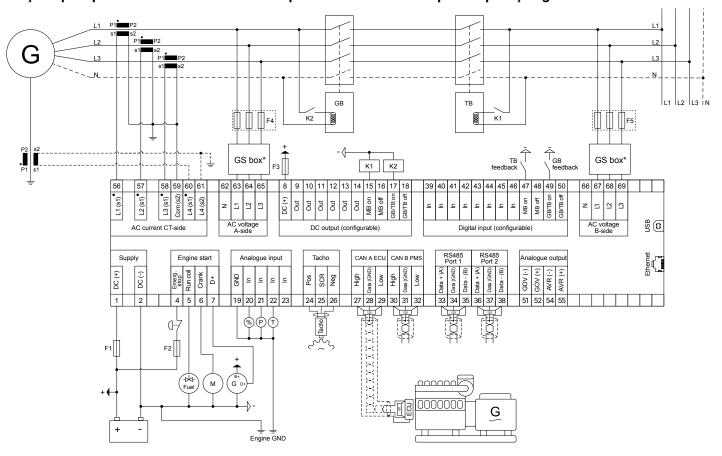
5.1.2 Fiação típica para o controlador de rede elétrica


- F1: 2 A DC máx. fusível de atraso de tempo/MCB, curva c
- F3: 4 A DC máx. fusível de atraso de tempo/MCB, curva b
- F4, F5: 2 A AC máx. fusível de atraso de tempo/MCB, curva c

5.1.3 Fiação típica para o controlador BTB

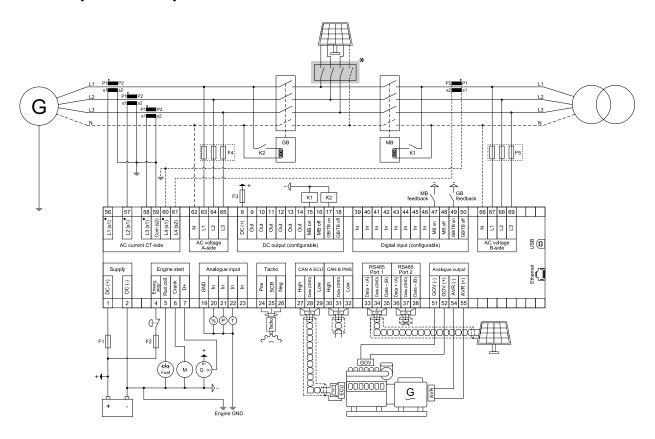

- F1: 2 A DC máx. fusível de atraso de tempo/MCB, curva c
- F3: 4 A DC máx. fusível de atraso de tempo/MCB, curva b
- F4, F5: 2 A AC máx. fusível de atraso de tempo/MCB, curva c

5.1.4 Fiação típica para controlador independente


- F1: 2 A DC máx. fusível de atraso de tempo/MCB, curva c
- F2: 6 A AC máx. fusível de atraso de tempo/MCB, curva c
- F3: 4 A DC máx. fusível de atraso de tempo/MCB, curva b
- F4, F5: 2 A AC máx. fusível de atraso de tempo/MCB, curva c

5.1.5 Fiação típica para controlador marinho independente

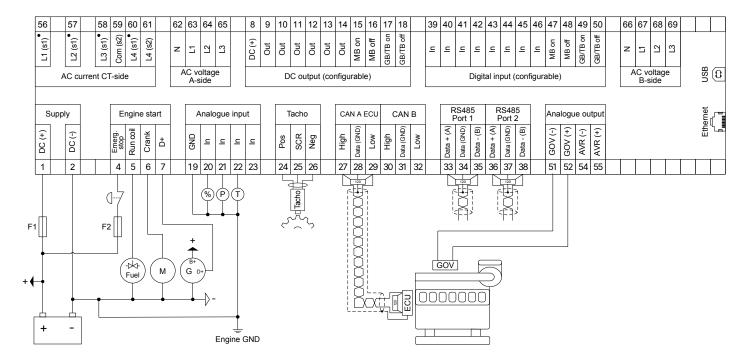
- F1: 2 A DC máx. fusível de atraso de tempo/MCB, curva c
- F2: 6 A AC máx. fusível de atraso de tempo/MCB, curva c
- F3: 4 A DC máx. fusível de atraso de tempo/MCB, curva b
- F4, F5: 2 A AC máx. fusível de atraso de tempo/MCB, curva c


Fiação típica para controlador marinho independente com GS-box para separação galvânica

NOTE * Uma caixa GS fornece separação galvânica para ambos os conjuntos de medições de tensão.

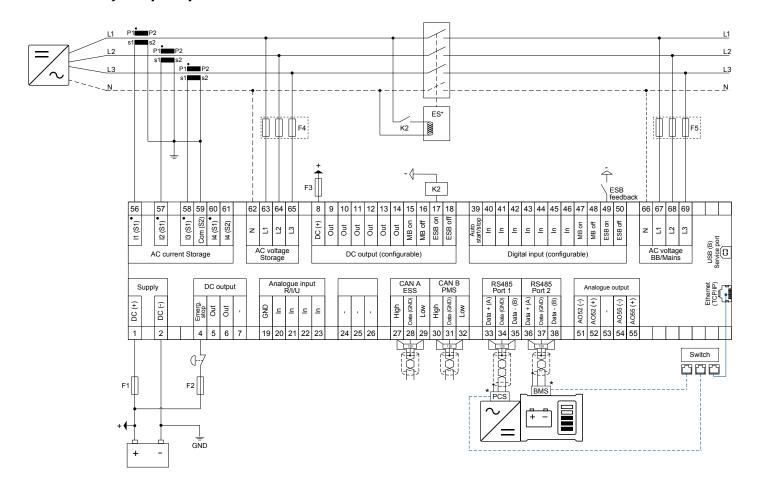
Veja o diagrama anterior para informações sobre fusíveis.

5.1.6 Fiação elétrica para controlador híbrido



NOTE * Disjuntor PV opcional.

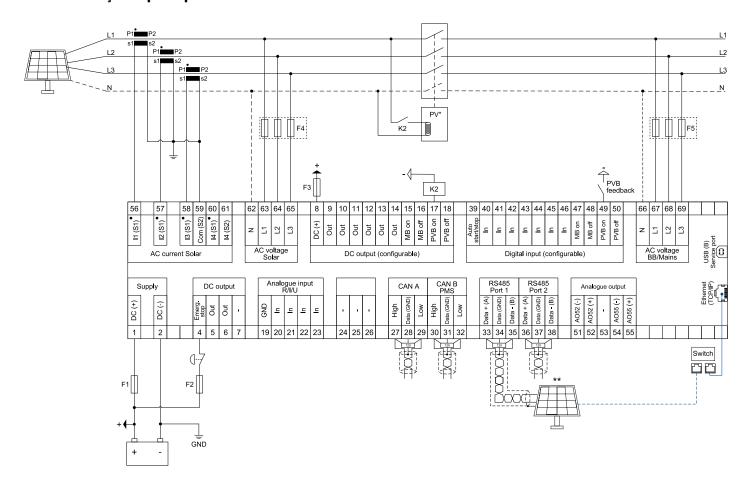
NOTE RS-485 porta 1 possui isolamento galvânico, enquanto RS-485 porta 2 não possui isolamento galvânico. A porta 1 é recomendada para comunicação com o inversor solar.


- F1: 2 A DC máx. fusível de atraso de tempo/MCB, curva c
- F2: 6 A AC máx. fusível de atraso de tempo/MCB, curva c
- F3: 4 A DC máx. fusível de atraso de tempo/MCB, curva b
- F4, F5: 2 A AC máx. fusível de atraso de tempo/MCB, curva c

5.1.7 Fiação típica para controlador de unidade do motor

- F1: 2 A DC máx. fusível de atraso de tempo/MCB, curva c
- F2: 6 A AC máx. fusível de atraso de tempo/MCB, curva c

5.1.8 Fiação típica para o controlador de armazenamento


NOTE * ES: Disjuntor ES opcional.

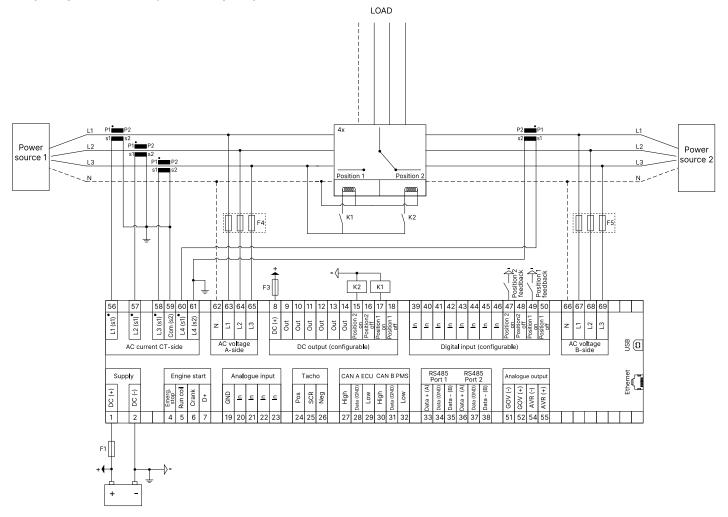
* BMS e PCS: O controlador pode usar RS-485 ou comunicação Ethernet. A comunicação RS-485 pode ser ligada em cascata a partir de uma porta.

NOTE RS-485 porta 1 possui isolamento galvânico, enquanto RS-485 porta 2 não possui isolamento galvânico.

- F1: 2 A DC máx. fusível de atraso de tempo/MCB, curva c
- F2: 6 A AC máx. fusível de atraso de tempo/MCB, curva c
- F3: 4 A DC máx. fusível de atraso de tempo/MCB, curva b
- F4, F5: 2 A AC máx. fusível de atraso de tempo/MCB, curva c

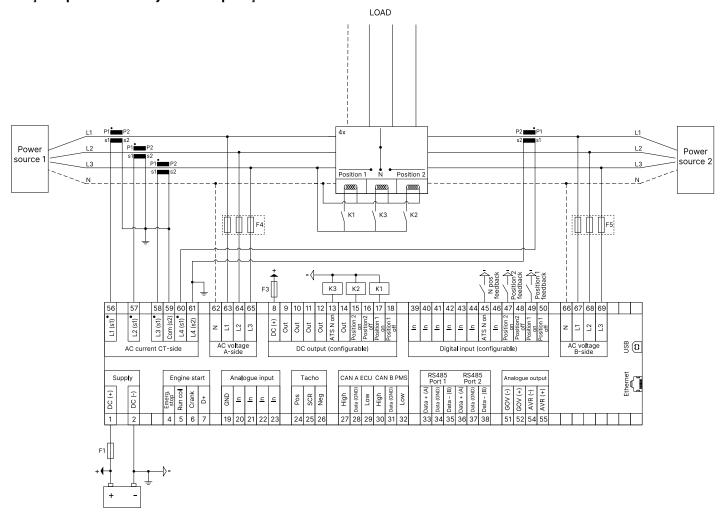
5.1.9 Fiação típica para o controlador solar

NOTE * Disjuntor PV Disjuntor PV opcional.

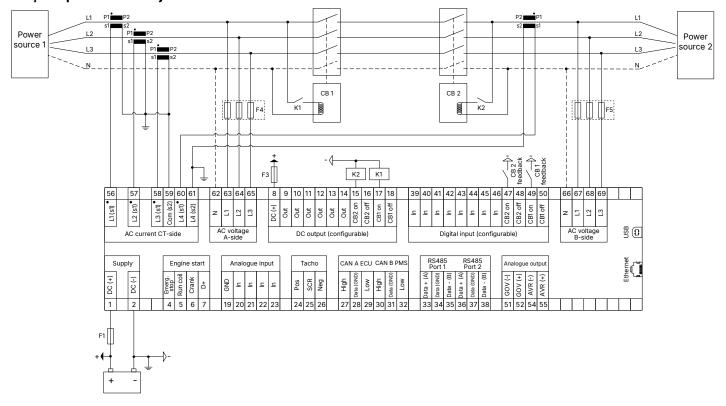

NOTE ** Comunicação com inversor PV: O controlador pode usar RS-485 ou comunicação Ethernet.

NOTE RS-485 porta 1 possui isolamento galvânico, enquanto RS-485 porta 2 não possui isolamento galvânico. A porta 1 é recomendada para comunicação com o inversor solar.

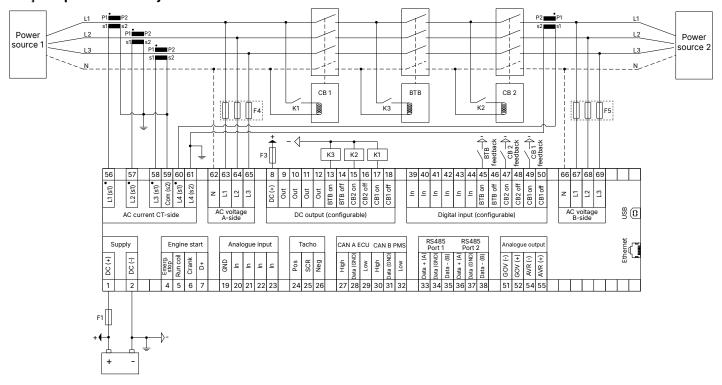
- F1: 2 A DC máx. fusível de atraso de tempo/MCB, curva c
- F2: 6 A AC máx. fusível de atraso de tempo/MCB, curva c
- F3: 4 A DC máx. fusível de atraso de tempo/MCB, curva b
- F4, F5: 2 A AC máx. fusível de atraso de tempo/MCB, curva c


5.1.10 Fiação típica para o controlador ATS

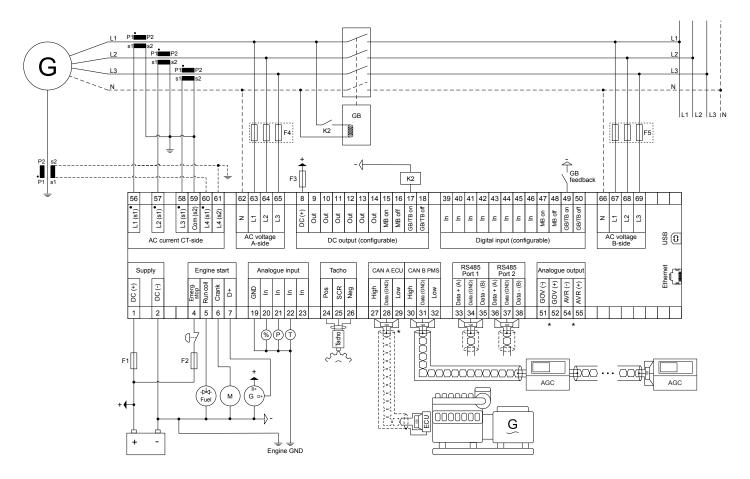
Fiação típica com 1 disjuntor e 2 posições


- F1: 2 A DC máx. fusível de atraso de tempo/MCB, curva c
- F3: 4 A DC máx. fusível de atraso de tempo/MCB, curva b
- F4, F5: 2 A AC máx. fusível de atraso de tempo/MCB, curva c

Fiação típica com 1 disjuntor e 3 posições


Veja o diagrama anterior para informações sobre fusíveis.

Fiação típica com 2 disjuntores


Veja o diagrama anterior para informações sobre fusíveis.

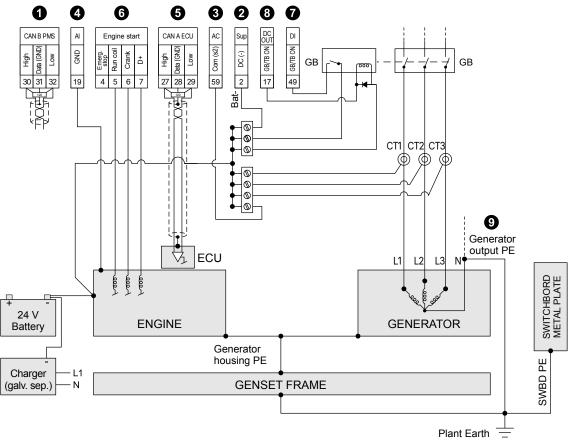
Fiação típica com 3 disjuntores

Veja o diagrama anterior para informações sobre fusíveis.

5.1.11 Fiação típica para controlador PMS leve

- F1: 2 A DC máx. fusível de atraso de tempo/MCB, curva c
- F2: 6 A AC máx. fusível de atraso de tempo/MCB, curva c
- F3: 4 A DC máx. fusível de atraso de tempo/MCB, curva b
- F4, F5: 2 A AC máx. fusível de atraso de tempo/MCB, curva c

NOTE * O diagrama mostra regulação do controle EIC. Alternativamente, o controle e AVR podem ser regulados usando as saídas analógicas.


5.1.12 Diretrizes de conexão elétrica - melhores práticas para aterramento

No controlador, a maioria das portas de entrada/saída não são galvanicamente separadas do DC- (terminal 2). Portanto, é importante seguir essas diretrizes de conexão elétrica para obter:

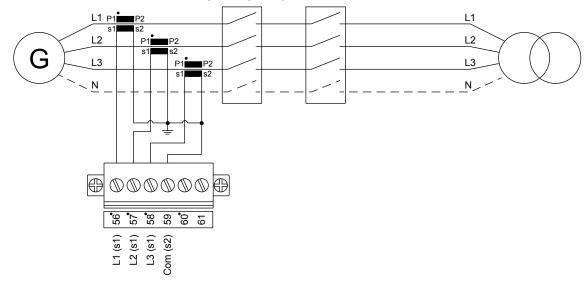
- · Leituras confiáveis dos sensores.
- Medição precisa da voltagem e corrente CA.
- Melhor proteção contra relâmpago (pulsos repentinos) e outras falhas de terra.

As entradas para voltagem CA, corrente CA e outras várias entradas análogas têm medições equilibradas dos sinais. Para obter medições confiáveis, é importante manter a diferença potencial baixa para DC- (terminal 2). Se a diferença potencial for muito alta, as medições podem ser imprecisas e, em vários vasos, danificar o circuito de entrada.

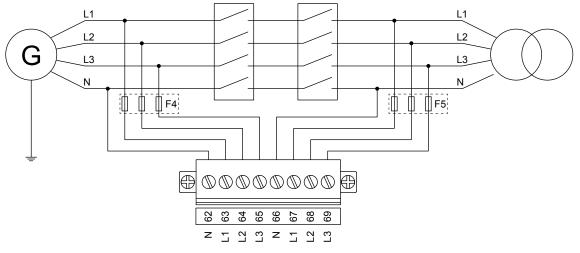
Exemplo: Configuração típica do aterramento

- 1. Porta CAN-B PMS (terminais 30, 31 e 32) normalmente é usada com cabos longos conectando muitos geradores.
 - Use um par de cabos CAN enrolados (120R) com proteção.
 - Conecte a proteção aos dados (GND) (terminal 31) em todos os controladores. CAN-B PMS tem separação galvanizada, então nenhum laço de aterramento é criado.
 - Não conecte a proteção ao PE.
 - Não instale cabos CAN como fios pendurados soltos. Monte-os como uma peça fixa da instalação, por exemplo, em bandejas de cabos.
- 2. A fonte de alimentação DC- (terminal 2) deve estar conectada ao BAT- (neste exemplo, o bloco do motor).
- 3. O COM S2 (terminal 59) é a entrada comum para os transformadores de corrente. O COM S2 (terminal 59) deve estar conectado ao BAT- ou ao gerador PE para manter a diferença de voltagem ao DC- (terminal 2) baixa (neste exemplo, os CTs têm o mesmo ponto de conexão BAT- que o terminal 2).
- 4. A entrada analógica GND (terminal 19) é a referência para as medições de entrada analógica. O GND (terminal 19) deve ter um ponto de conexão BAT-/PE como o aterramento do sensor. A diferença de potencial ao terminal 2 deve ser baixa (neste exemplo, o terminal 19 é conectado ao bloco do motor para as melhores leituras).
- 5. A porta CAN A ECU (terminais 27, 28 e 29) normalmente é conectada ao motor ECU com um cabo curto. Não há separação galvanizada na porta CAN A ECU.

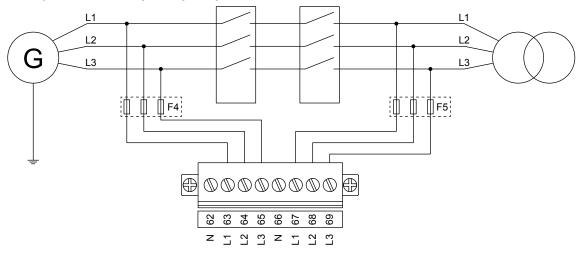
- Use um par de cabos CAN enrolados (120R) com proteção.
- Conecte a proteção aos dados (GND) (terminal 28) para melhorar a imunidade para transientes de descarga (EFT).
- Conecte a proteção ao motor ECU, conforme descrito pelo fabricante do motor.
- 6. Os sinais na bobina de funcionamento (terminal 5), manivela (terminal 6) e D+ (terminal 7) devem estar conectados ao BAT- no bloco do motor como referência. Esses terminais não são fornecidos internamente, mas através da parada de emergência. Isso significa que o BAT+ deve estar conectado através da parada de emergência (terminal 4).
- 7. As entradas digitais (terminais 39 a 50) devem ter BAT- como referência de aterramento. O ponto de conexão preferido para a referência fica perto do ponto de conexão BAT- para DC- (terminal 2).
- 8. As saídas DC (terminais 9 a 18) devem ter a mesma referência de aterramento que as entradas digitais.
- 9. Conecte o Neutro/PE dos geradores diretamente na terra da fábrica. Isso evita que curto-circuitos e transientes de alta energia do lado da grade causem danos graves ao sistema.


NOTE Todas as conexões elétricas PE e BAT- devem ser feitas com fios grossos e curtos.

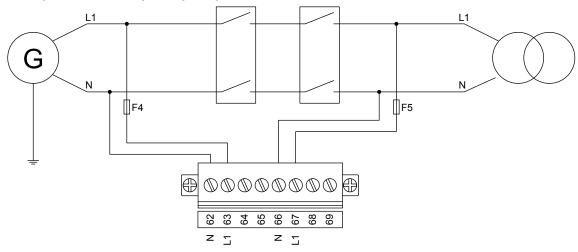
5.2 Conexões em CA


O controlador pode ser ligado em configurações trifásicas, monofásicas e com divisão de fases. Você pode encontrar os parâmetros para configurar a conexão em CA em **Settings > Basic settings > Measurement setup > Wiring connection > AC configuraç**ões > Configurações básicas > Configuração de medição > Conexão elétrica > Configuração em CA].

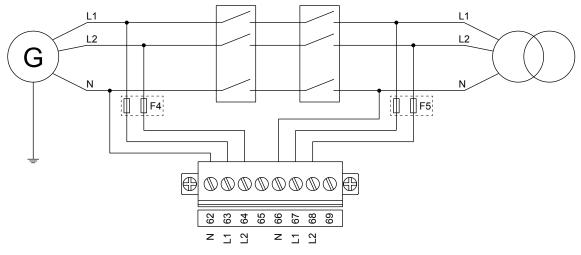
NOTE Para obter informações sobre a conexão elétrica necessária para uma determinada aplicação, entre em contato com o fabricante do quadro de distribuição. Apresentamos a seguir, sugestões de conexão elétrica.


Transformadores de corrente para aplicação de 3 fases

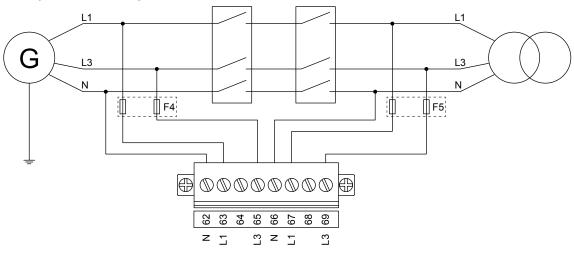
Medições de tensão para aplicação de 3 fases (4 fios)



Medições de tensão para aplicação de 3 fases (3 fios)

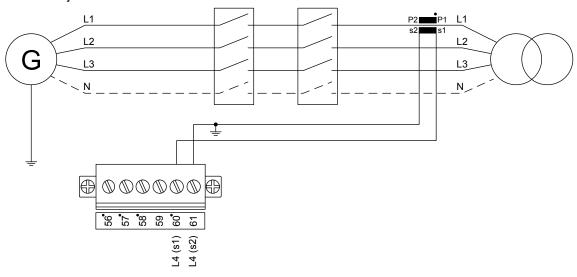


Ao usar sistemas de distribuição trifásicos, a linha neutra (N) somente será necessária se for um sistema trifásico + neutro. Não conecte os terminais 62 e 66 se o sistema de distribuição for do tipo trifásico sem neutro.

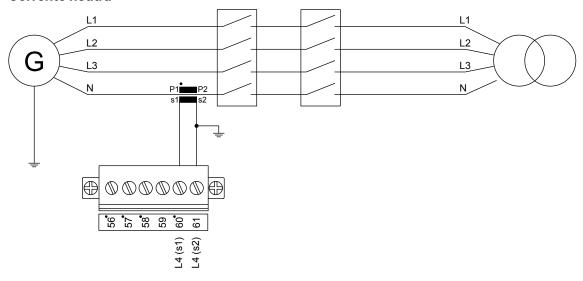

Medições de tensão para aplicação monofásica

Medições de tensão para fase dividida L1/L2

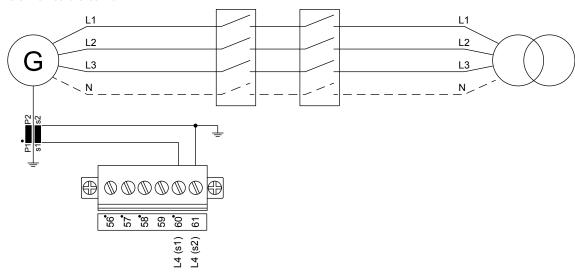
Medições de tensão para fase dividida L1/L3

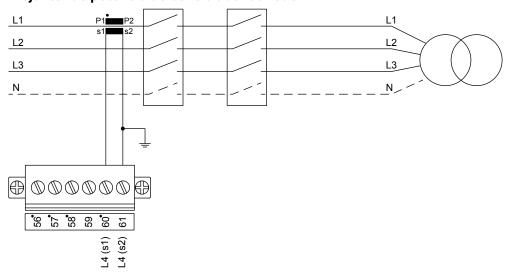


F4, F5: Fusível 2 A AC máx./MCB, curva c


5.2.1 I4 - corrente

Os terminais L4 podem ser usados para medir a corrente CA. As seguintes configurações são possíveis (dependendo do tipo de controlador).


Alimentação da rede


Corrente neutra

Corrente de terra

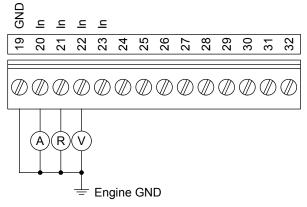
Disjuntor de potência do controlador da rede

5.2.2 Aterramento do transformador de corrente

O aterramento do transformador de corrente deve ser feito na conexão s2.

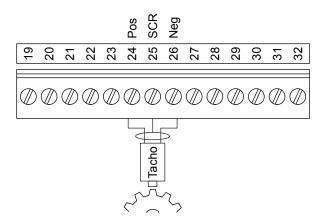
Deixar de aterrar um transformador de corrente poderia levar a ferimentos ou à morte.

Certifique-se de que cada transformador de corrente está aterrado.

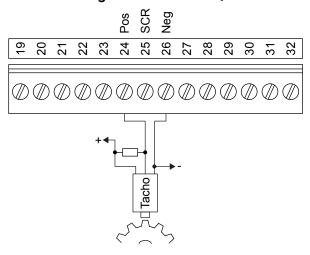

5.2.3 Fusíveis para medição de tensão

Se os fios ou cabos necessitarem de proteção com fusíveis, utilize fusíveis de ação retardada de 2 A, no máximo, dependendo dos fios/cabos a serem protegidos.

5.2.4 Entradas analógicas

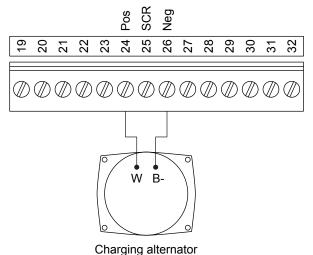

Entrada analógica

Todos os sensores devem ser conectados ao GND (Filtro de densidade neutra) do motor.

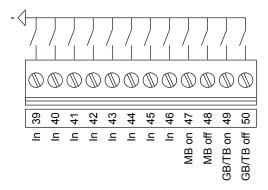


Entrada analógica do tacômetro (MPU ou pickup magnético)

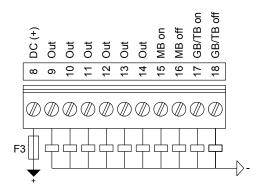
Conecte a blindagem do cabo ao terminal 25 (Retificadores controlados de silício - SCR, do inglês "Silicone Controlled Rectifiers"). Não aterre o cabo.


Entrada analógica do tacômetro (NPN ou transístor com junção negativo-positivo-negativo)

Entrada analógica do tacômetro (PNP ou transístor com junção negativo-positivo-negativo)

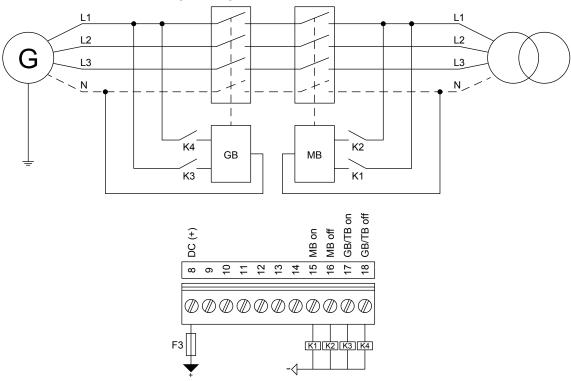


Entrada analógica do tacômetro (W)


5.3 Conexões em CC

5.3.1 Entradas digitais

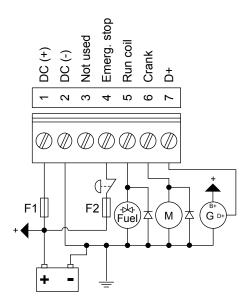
Para que conformidade com o padrão EN60255 seja mantida quando a fiação tiver mais de 10 m, um diodo 4007 deve ser conectado em cada entrada.


5.3.2 Saídas digitais

Fusível F3: 4 A DC máx. fusível de atraso de tempo/MCB, curva b

5.3.3 Fiação do disjuntor

Conexão elétrica do interruptor de pulso



Conexão elétrica do interruptor contínuo

Fusível F3: 4 A DC máx. fusível de atraso de tempo/MCB, curva b

5.3.4 Alimentação e inicialização

Fusíveis

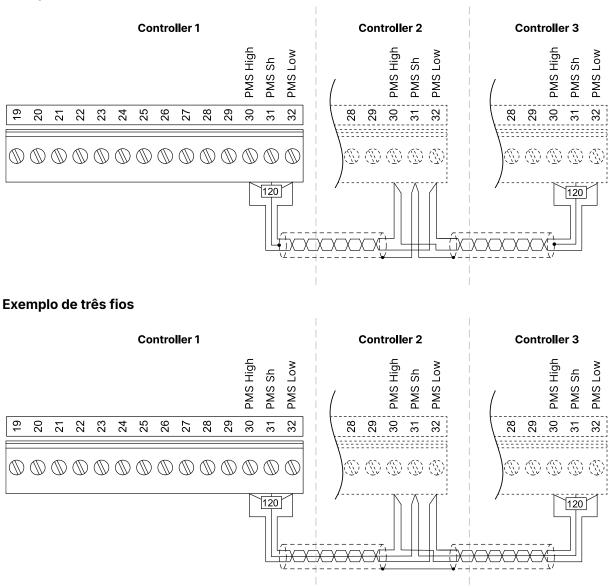
- F1: 2 A DC máx. fusível de atraso de tempo/MCB, curva c
- F2: 6 A AC máx. fusível de atraso de tempo/MCB, curva c

NOTE Lembre-se de montar os diodos antiparalelos.

5.4 Comunicação

5.4.1 Recomendação de cabo para RS-485 e barramento CAN

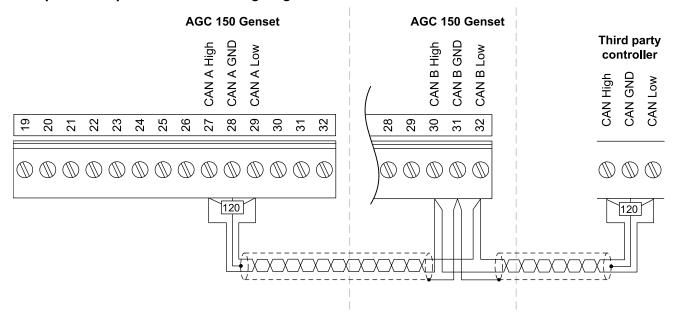
Use um cabo trançado blindado. Use um resistor de 120 ohm em cada extremidade. Uma fiação usando um cabo de dois fios é aceitável. O melhor é uma fiação usando um cabo de três fios.

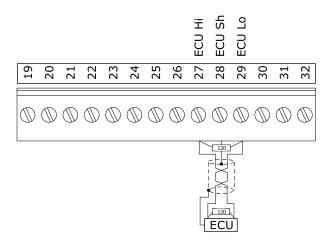

NOTE Se os terminais do dispositivo não forem isolados galvanicamente, aterre a blindagem do cabo na respectiva extremidade.

NOTE O sistema não deve ter mais de um aterramento para a blindagem do cabo.

A DEIF recomenda o seguinte cabo: Belden 3105A ou equivalente. 22 AWG (0,6 mm \varnothing , 0.33mm²) par trançado, blindado, <40 m Ω /m, mínimo de 95% de cobertura de blindagem. O tipo de cabo é particularmente importante se o comprimento da linha total for maior que 30 m.

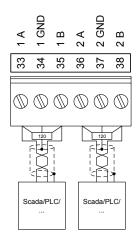
5.4.2 Sistema de gerenciamento de energia do barramento CAN, CANshare e PMS lite


Exemplo de dois fios


5.4.3 Compartilhamento de carga digital de terceiros

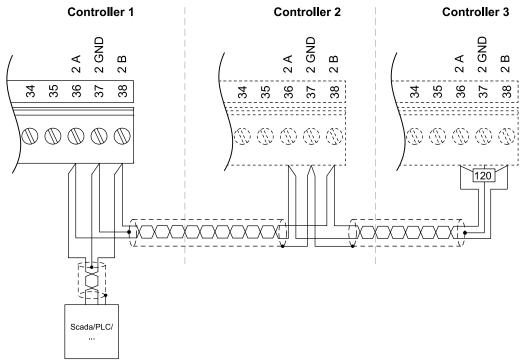
Use os terminais do barramento CAN para conectar em série os controladores AGC 150 e controladores de terceiros para compartilhamento de carga digital.

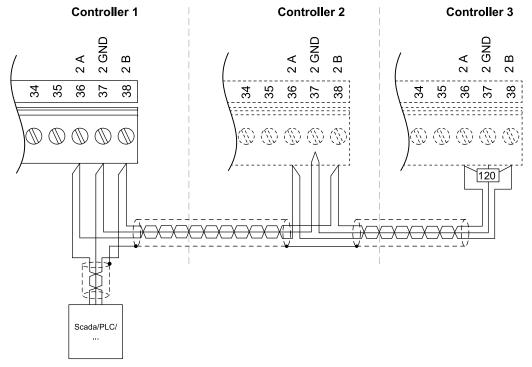
Exemplo de compartilhamento de carga digital de terceiros usando as interfaces de barramento CAN



5.4.4 Comunicação do motor via CAN bus

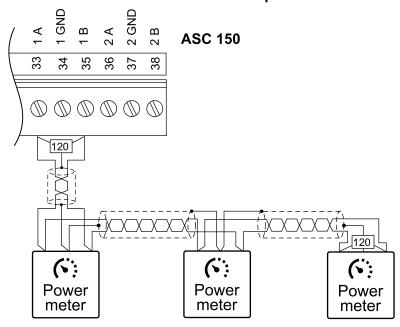
Para que conformidade com o padrão EN60255 seja mantida quando a fiação tiver mais de 10 m, o terminal 28 deve ser conectado ao GND (terra).


5.4.5 Modbus RS-485 (AGC/ASC é o servidor)


RS-485 porta 1 possui isolamento galvânico, enquanto RS-485 porta 2 não possui isolamento galvânico.

Para que conformidade com o padrão EN60255 seja mantida quando a fiação tiver mais de 10 m, os terminais 34 e 37 devem ser conectados ao GND (terra).

Controladores múltiplos conectados ao SCADA/PLC (2 fios)



Controladores múltiplos conectados ao SCADA/PLC (3 fios)

5.4.6 Modbus RS-485 (ASC é o cliente)

Encadeamento em série do medidor de potência

RS-485 porta 1 possui isolamento galvânico, enquanto RS-485 porta 2 não possui isolamento galvânico. A porta 1 é recomendada para comunicação com os medidores de potência.

Se os medidores de potência forem do mesmo tipo, é possível encadeá-los em série. Você pode incluir medidores de potência do grupo gerador* e da rede elétrica no mesmo encadeamento em série, mesmo se forem de diferentes tipos.

Para que conformidade com o padrão EN60255 seja mantida quando a fiação tiver mais de 10 m, os terminais 34 e 37 devem ser conectados ao GND (terra).

More information

* Um controlador de grupo gerador externo também pode atuar como medidor de potência. Consulte **Medições de potência** nas notas de aplicação **Compatibilidade híbrida do DEIF** para obter informações sobre os medidores de potência e controladores de grupos geradores.