iE 250

intelligent Energy Controller

Installationsanleitung

1. Über die Installationsanleitungen

1.1 Symbole und Notation	
1.2 Zielgruppe der Installationsanweisungen	5
1.3 Benötigen Sie weitere Informationen?	5
1.4 Warnhinweise und Sicherheit	5
1.5 Rechtliche Hinweise	
2. Vorbereiten der Installation	
2.1 Montageoptionen	
2.2 CAD-Zeichnungen	
2.3 Ort	10
2.3.1 In Schalttafel eingebaute Steuerung oder Display	10
2.4 Tools	1
2.5 Material	12
3. Installation und Montage der Geräte	
3.1 In Schalttafel eingebaute Steuerung oder Display	
3.1.1 Schalttafelausschnitt	13
3.1.2 Abmessungen	14
3.1.3 Montieren Sie das Gerät	14
4. Verdrahtung der Geräte	
4.1 Erläuterungen zur Verdrahtung	16
4.1.1 Lage der Klemmen	16
4.1.2 Bi-direktionale Kanäle	16
4.1.3 Verdrahtungsbeispiel	16
4.2 Klemmenanschlüsse	18
4.2.1 Erläuterungen zu den Klemmenanschlüssen	18
4.2.2 Steuerung	19
4.2.3 Messeingang-Ausgangsmodul (MIO2.1)	2
4.3 Verdrahtungsbeispiel	23
4.3.1 Typische Verdrahtung für eine netzunabhängige Einzelaggregatsteuerung (GLS)	
4.3.2 Typische Verdrahtung für eine netzgebundene Einzelaggregatsteuerung (GLS)	24
4.3.3 Typische Verdrahtung für eine Einzelaggregatsteuerung (GLS+NLS)	
4.3.4 Typische Verdrahtung für die Aggregatsteuerung (GLS)(GLS)	26
4.3.5 Typische Verdrahtung für die Netzsteuerung	27
4.3.6 Typische Verdrahtung für eine Netzsteuerung (NLS+KS)	28
4.3.7 Typische Verdrahtung für eine SKS-Steuerung	29
4.4 AC Verdrahtung	29
4.4.1 AC-Anschlüsse	29
4.4.2 4 Strom	32
4.4.3 Stromwandler Erdung	34
4.4.4 Sicherungen zur Spannungsmessung	35
4.4.5 Analogeingänge	35
4.5 DC Verdrahtung	37
4.5.1 Digitaleingänge	37
4.5.2 Digitale bi-direktionale Kanäle	
4.5.3 Schutzschalterverkabelung	38
4.5.4 Stromversorgung und Start	39
4.5.5 Verdrahtung der Stromeingänge	39

4.5.6 Beschaltungsvarianten der Spannungsabgriffe	40
4.5.7 Verdrahtung des Widerstandseingangs	
4.5.8 Verdrahtung der Analogausgänge	
4.6 Kommunikationsverdrahtung	44
4.6.1 Empfohlene Kommunikationskabel	44
4.6.2 CAN-Bus Motorkommunikation	44
4.6.3 CAN-Bus-Power-Management	45
4.6.4 Modbus RS-485	45
4.6.5 Kommunikation mit Erweiterungsracks	46
5. Technische Daten	
5.1 Umweltspezifikationen	47
5.2 Steuerung	48
5.2.1 Klemmenanschlüsse	48
5.2.2 Elektrische Spezifikationen	49
5.2.3 Spezifikationen für die Kommunikation	50
5.3 Messeingang, Ausgangsmodul (MIO2.1)	51
5.3.1 Klemmenanschlüsse	51
5.3.2 Elektrische Spezifikationen	51
5.3.3 Spezifikationen für die Kommunikation	54
6. Ende der Nutzungsdauer	
6.1 Entsorgung von Elektro- und Elektronikaltgeräten	55

1. Über die Installationsanleitungen

1.1 Symbole und Notation

Symbole für allgemeine Hinweise

ANMERKUNG Allgemeine Informationen

Zusätzliche Informationen

Hier erfahren Sie, wo Sie weitere Informationen finden können.

Beispiel

Dies zeigt ein Beispiel.

Wie man ...

Hier finden Sie einen Link zu einem Video mit Hilfe und Anleitung.

Symbole für Gefahrenhinweise

GEFAHR!

Dies zeigt gefährliche Situationen.

Wenn die Richtlinien nicht befolgt werden, führen diese Situationen zu Tod, schweren Verletzungen, Beschädigung oder Zerstörung von Geräten.

WARNUNG

Dies zeigt potenziell gefährliche Situationen.

Wenn die Richtlinien nicht befolgt werden, können diese Situationen zu Tod, schweren Verletzungen, Beschädigung oder Zerstörung von Geräten führen.

VORSICHT

Dies zeigt Situationen mit geringem Risiko.

Wenn die Richtlinien nicht befolgt werden, können diese Situationen zu leichten oder mittelschweren Verletzungen führen.

HINWEIS

Dies zeigt einen wichtigen Hinweis.

Lesen Sie unbedingt diese Informationen.

1.2 Zielgruppe der Installationsanweisungen

Die Installationsanleitung richtet sich in erster Linie an den Installateur, der die Steuerungen und Displays montiert und verdrahtet. Die Installationsanleitung kann auch für die Inbetriebnahme verwendet werden, um die Installation zu überprüfen.

1.3 Benötigen Sie weitere Informationen?

Über die nachstehenden Links erhalten Sie direkten Zugang zu den benötigten Ressourcen.

Offizielle DEIF-Homepage.

Siehe die gesamte zugehörige Dokumentation.

Selbsthilfe-Ressourcen und Möglichkeiten zur Kontaktaufnahme mit DEIF.

Erfahren Sie, wie Sie dieses Produkt verwenden können.

iE 250-Produktseite.

Wir freuen uns über Ihr Feedback zu unserer Dokumentation.

AutoCAD-Zeichnung

Step STP-Zeichnung

3D-PDF-Zeichnung *

ANMERKUNG

* Um eine 3D-PDF-Datei anzuzeigen, müssen Sie Multimedia- und 3D-Inhalte in Ihrem PDF-Viewer aktivieren.

1.4 Warnhinweise und Sicherheit

Sicherheit bei Installation und Betrieb

Bei der Installation und Bedienung des Geräts müssen Sie möglicherweise mit gefährlichen Strömen und Spannungen arbeiten. Die Installation darf nur von autorisiertem Personal durchgeführt werden, das mit den Gefahren beim Arbeiten mit elektrischen Geräten vertraut ist.

Gefährliche Ströme und Spannungen

Berühren Sie keine Klemmen, insbesondere nicht die AC-Messeingänge und die Relaisklemmen, da dies zu Verletzungen oder zum Tod führen kann.

Deaktivieren Sie die Schalter

Deaktivieren Sie die Schalter

Unbeabsichtigtes Schließen des Schutzschalters kann zu lebensbedrohlichen und/oder gefährlichen Situationen führen.

Trennen oder deaktivieren Sie die Schalter, BEVOR Sie die Steuerung an die Stromversorgung anschließen. Aktivieren Sie die Schalter erst, NACHDEM die Verdrahtung und der Betrieb der Steuerung gründlich getestet worden sind

Deaktivieren Sie den Motorstart

Unbeabsichtigte Motorstarts

Unbeabsichtigtes Starten des Motors kann zu lebensbedrohlichen und/oder gefährlichen Situationen führen.

Trennen, deaktivieren oder blockieren Sie den Motorstart (den Anlasser und den Betriebsmagnet), BEVOR Sie die Stromversorgung der Steuerung anschließen. Geben Sie den Motorstart erst frei, NACHDEM die Verdrahtung und der Betrieb der Steuerung gründlich getestet wurden.

Elektrostatische Entladung

Schützen Sie die Geräteanschlüsse vor elektrostatischer Entladung, wenn sie nicht in einem geerdeten Rack installiert sind. Elektrostatische Entladungen können die Klemmen beschädigen.

Stromversorgung für die Steuerung

Die Steuerung muss über eine zuverlässige Stromzufuhr und eine Notstromversorgung verfügen. Die Konstruktion der Schalttafel muss einen ausreichenden Schutz des Systems gewährleisten, wenn die Stromversorgung der Steuerung ausfällt.

Wenn die Steuerung nicht mit Strom versorgt wird, ist sie ausgeschaltet und bietet **keinen** Schutz. Die Steuerung kann keine Auslösungen, Abschaltungen oder Verriegelungen erwirken, wenn sie ausgeschaltet ist. Die Steuerung ist zur Kontrolle oder zum Power-Management**nicht** in der Lage. Alle Relais der Steuerung fallen ab.

Schließen Sie die Schutzerde der Steuerung an

Nicht ausgeführte Erdung

Wenn die Steuerung (oder das Erweiterungsrack) nicht geerdet ist, kann dies zu Verletzungen oder zum Tod führen.

Sie müssen die Steuerung (oder das Erweiterungsrack) mit einem Schutzleiter erden.

Werkseinstellungen

Die Steuerung wird werkseitig mit einer Reihe von Standardeinstellungen vorprogrammiert ausgeliefert. Diese Einstellungen beruhen auf typischen Werten und sind für Ihr System möglicherweise nicht angemessen. Sie müssen daher alle Parameter überprüfen, bevor Sie die Steuerung verwenden.

Automatischer und ferngesteuerter Start

VORSICHT

Automatischer Aggregatstart

Das Power-Management-System startet automatisch Stromaggregate, wenn mehr Strom benötigt wird. Es kann für einen unerfahrenen Bediener schwierig sein, vorherzusagen, welche Aggregate starten werden. Darüber hinaus können Aggregate aus der Ferne gestartet werden (z.B. über eine Ethernet-Verbindung oder einen Digitaleingang).

Um Verletzungen zu vermeiden, müssen das Design des Aggregats, das Layout und die Wartungsverfahren die vorgenannten Punkte berücksichtigen.

1.5 Rechtliche Hinweise

Geräte von Drittanbietern

DEIF übernimmt keine Verantwortung für die Installation oder den Betrieb von Geräten Dritter, einschließlich des Aggregats.

Garantie

HINWEIS

Garantie

Die Steuerung darf nicht von Unbefugten geöffnet werden. Sollte das Gerät dennoch geöffnet werden, führt dies zu einem Verlust der Gewährleistung.

Handelsmarken

DEIF und das DEIF-Logo sind Marken der DEIF A/S

Bonjour® ist eine eingetragene Handelsmarke von Apple Inc. in den Vereinigten Staaten und anderen Ländern.

Adobe®, Acrobat® und Reader®sind entweder eingetragene Marken oder Marken von Adobe Systems Incorporated in den Vereinigten Staaten und/oder anderen Ländern.

CANopen® ist eine eingetragene Gemeinschaftsmarke von CAN in Automation e.V. (CiA).

SAE J1939® ist eine eingetragene Handelsmarke von SAE International®.

EtherCAT®, EtherCAT P®, Safety over EtherCAT® sind Handelsmarken oder eingetragene Handelsmarken, lizenziert durch die Beckhoff Automation GmbH, Deutschland.

Modbus® ist eine eingetragene Handelsmarke von Schneider Automation Inc.

Torx®, Torx Plus® sind Marken oder eingetragene Marken von Acument Intellectual Properties, LLC in den Vereinigten Staaten oder anderen Ländern.

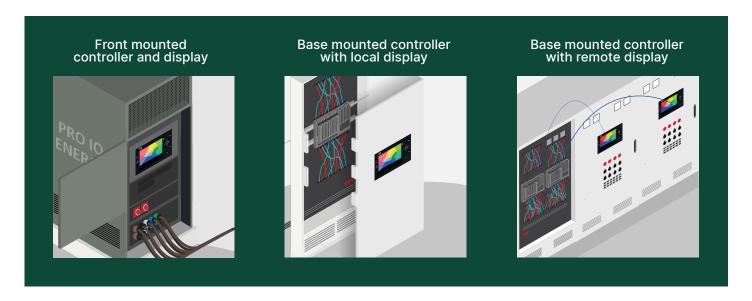
Windows® ist eine eingetragene Handelsmarke von Microsoft Corporation in den Vereinigten Staaten und anderen Ländern.

Alle Handelsmarken sind das Eigentum ihrer jeweiligen Besitzer.

Haftungsausschluss

DEIF A/S behält sich das Änderungsrecht auf den gesamten Inhalt dieses Dokumentes vor.

Die englische Version dieses Dokuments enthält stets die neuesten und aktuellsten Informationen über das Produkt. DEIF übernimmt keine Verantwortung für die Genauigkeit der Übersetzungen und Übersetzungen werden eventuell nicht zur selben Zeit wie das englische Dokument aktualisiert. Im Falle von Unstimmigkeiten hat das englische Dokument Vorrang.


Urheberrecht

2. Vorbereiten der Installation

2.1 Montageoptionen

Die iE 250 ist sehr flexibel für unterschiedliche Montageorte.

ANMERKUNG Erfragen Sie die Verfügbarkeit einiger Versionen bei DEIF.

2.2 CAD-Zeichnungen

CAD-Zeichnungen sind erhältlich bei www.deif.com:

www.deif.com/rtd/ie250/stp

www.deif.com/rtd/ie250/3dpdf *

ANMERKUNG

* Um eine 3D-PDF-Datei anzuzeigen, müssen Sie Multimedia- und 3D-Inhalte in Ihrem PDF-Viewer aktivieren.

2.3 Ort

2.3.1 In Schalttafel eingebaute Steuerung oder Display

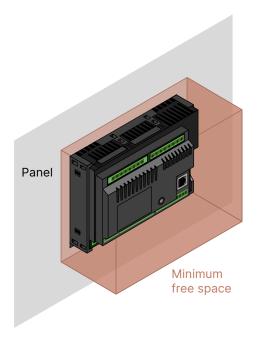
Die Einbau-Steuerung ist für die Integration in eine Schalttafel vorgesehen, wobei die Rückseite in einem Gehäuse untergebracht ist.

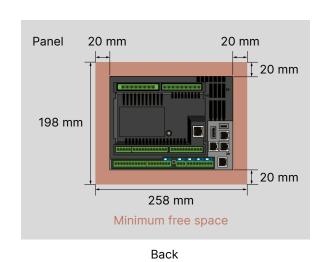
Für eine UL/cUL-Zulassung muss die Montage

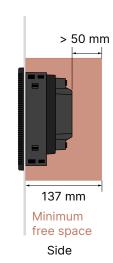
- auf einer ebenen Fläche eines Gehäuses des Typs 1 erfolgen, und
- gemäß NEC (USA) oder CEC (Kanada) ausgeführt werden.

Das Gerät muss in einer sauberen und trockenen Umgebung installiert und betrieben werden, wie im Datenblatt angegeben.

Wenn das Gerät in einem Bereich installiert wird, in dem es ständig starken Vibrationen ausgesetzt ist, muss das Gerät von diesen Vibrationen isoliert werden. Die Installationsumgebung muss den elektrischen, mechanischen und umweltbezogenen Spezifikationen des Geräts entsprechen, wie sie im Datenblatt beschrieben sind.

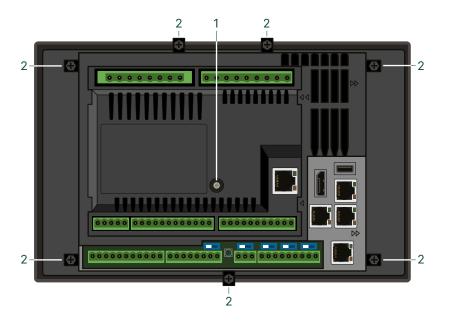

Anforderungen an die Belüftung und Abstände


Die Rückseite des Geräts ist nicht gegen Staub geschützt. Staubansammlungen können das Gerät beschädigen oder zu Überhitzung führen. Wir empfehlen, das Gerät in einem Schrank mit einem Filter an der Luftzufuhr zu montieren.


Um eine gute Belüftung zu gewährleisten, muss das Gerät mit der Rückseite vertikal und mit der Längsachse horizontal montiert werden. Die Schrift auf dem Gerät muss waagerecht sein.

ANMERKUNG

Die Helligkeit des Bildschirms kann beeinträchtigt werden, wenn die Belüftung nicht ausreichend ist. Die Kabelführung darf die Lüftungsöffnungen nicht blockieren.



Im Schrankinneren muss oberhalb, unterhalb und an beiden Seiten des Geräts ein Freiraum von mindestens 20 mm vorhanden sein. Wir empfehlen einen Freiraum von mehr als 50 mm hinter dem Gerät für die Kabel und die Verlegung. Für Ethernet-Kabel ist möglicherweise ein Mindestbiegeradius erforderlich.

Gesamtplatzbedarf einschließlich des Mindestfreiraumes:

Höhe: 198 mm Breite: 258 mm Tiefe: 137 mm

2.4 Tools

#	Version	Werkzeug	Zubehör	Drehmoment	Verwendet für
1.	ALLE	Schraubenzieher	T15 (Torx plus 3,35 Bit)	0,15 Nm (1,3 lb-in)	Entfernen Sie die Schraube MIO2.1 oder bringen Sie sie wieder an.
2.	In Schalttafel eingebaute Steuerung	Schraubenzieher	PH2-Bit oder ein 5 mm-Flachklingen- Bit	0,1 Nm (0,9 lb-in)	Ziehen Sie die Schraubschellen der Displayeinheit fest.
	ALLE	Schraubenzieher	3,5 mm- Flachklingen-Bit	0,5 Nm (4,4 lb-in)	Schließen Sie die Verdrahtung an die 2,5 mm² Klemmen an.
		Schraubenzieher	2,5 mm- Flachklingen-Bit	0,25 Nm (2,2 lb-in)	Schließen Sie die Verdrahtung an die 1,5 mm² Klemmen an.
_		Drahtabisolierer, Zange und Schneidwerkzeug	-	-	Verdrahtung vorbereiten. Kabelbinder abschneiden.
_		Sicherheitsausrüstung	-	-	Persönliche Schutzausrüstung, gemäß den örtlichen Normen und Anforderungen
_		Antistatikband	-	-	Verhindern Sie Schäden durch elektrostatische Entladung.

HINWEIS

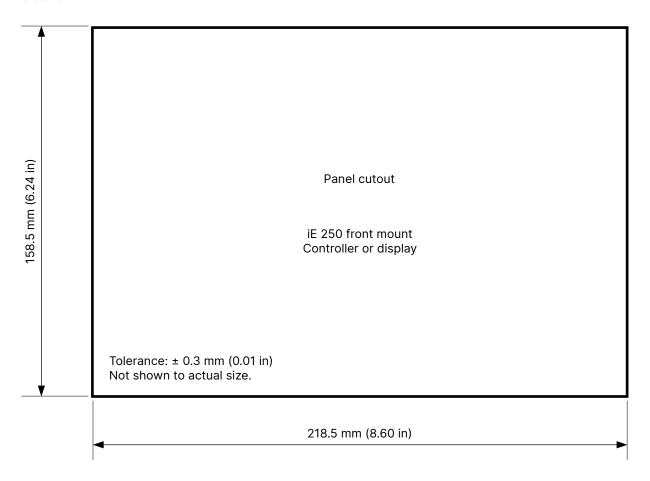
Drehmomentschäden an Geräten

Verwenden Sie bei der Installation keine Elektrowerkzeuge. Zu hohe Drehmomente beschädigen die Geräte. Befolgen Sie die Anweisungen, um das richtige Drehmoment zu erreichen.

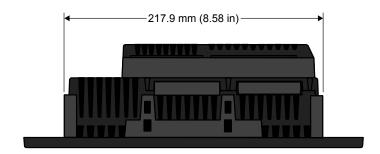
2.5 Material

Material	Version	Anmerkungen
Sieben Schraubklemmen	In Schalttafel eingebaute Steuerung	Einbau der Steuerung in die Schalttafel
Kabel und Klemmen	ALLE	Verdrahtung von Messstellen, DEIF-Geräten oder Geräten von Dritten mit den Klemmen der Steuerung.
Ethernet-Kabel:	ALLE	Verbindung der Kommunikation zwischen Steuerungen und/ oder externen Systemen
CAN-Kabel	ALLE	Verbindung der Kommunikation zwischen Steuerungen und/ oder externen Systemen

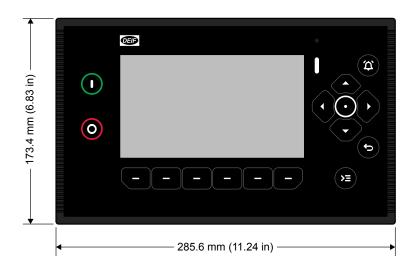
Zusätzliche Informationen

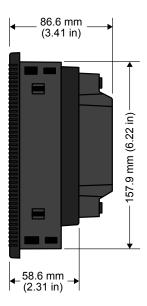

Die technischen Daten finden Sie im Datenblatt oder in Technische Spezifikationen.

3. Installation und Montage der Geräte


3.1 In Schalttafel eingebaute Steuerung oder Display

3.1.1 Schalttafelausschnitt


Diese Zeichnung des Plattenausschnitts ist dient zur Orientierung und ist nicht im Maßstab 1:1. Die Abmessungen werden beim Druck nicht korrekt sein. Verwenden Sie die angegebenen Maße, um Ihre Schablone für den Plattenausschnitt zu erstellen.



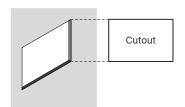
3.1.2 In Schalttafel eingebaute Steuerung mit Display und MIO2.1

Kategorie	Spezifikationen
Abmessungen	L×H×D: 285,6 × 173,4 × 86,6 mm (Außenrahmen) Schalttafelausschnitt, L×H: 218,5 × 158,5 mm Toleranz: \pm 0,3 mm
Gewicht	835 g (1,8 lb)

3.1.3 Montieren Sie das Gerät

HINWEIS

Schutz vor statischer Entladung


Schützen Sie die Geräteklemmen während der Installation vor statischer Entladung. Der Schutz der Klemmen ist sehr wichtig, solange die Erdung des Rahmens nicht angeschlossen ist.

x 7 Das Gerät wird mit sieben Schraubschellen (im Lieferumfang enthalten) befestigt.

Die Einbau-Steuerung iE 250 mit Display ist für die Integration in eine Schalttafel vorgesehen.

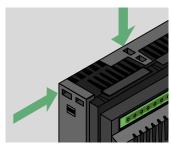
1.

Erzeugen Sie ein rechteckiges Loch in der Platte in der richtigen Größe.

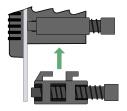
Die Abmessungen des Ausschnitts finden Sie unter Schalttafelausschnitt .

2.

Vergewissern Sie sich, dass jede Schraubschelle bis zu der dargestellten Position gelockert ist.


Entfernen Sie die Schraubschelle nicht vollständig aus der Halterung.

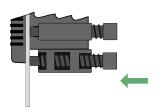
3.


Setzen Sie das Gerät in den Schalttafelausschnitt ein.

4.

Machen Sie am Gerät die Befestigungslöcher für die Schraubschellen ausfindig.

5.

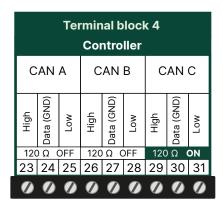

Führen Sie jede Schraubschelle in die jeweiligen Befestigungslöcher ein.

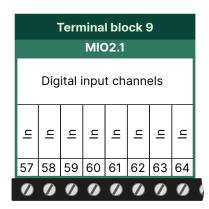
6.

Bewegen Sie jede Schraubschelle in ihre Position.

7.

Drehen Sie die Schraubschellen, bis das Gerät fest auf der Schalttafeloberfläche sitzt


Überschreiten Sie nicht das empfohlene Drehmoment von 0,1 N-m.


4. Verdrahtung der Geräte

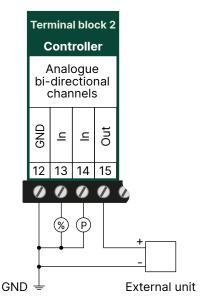
4.1 Erläuterungen zur Verdrahtung

4.1.1 Lage der Klemmen

Die Verdrahtung in diesem Handbuch zeigt, ob sich die Klemmen an der **Steuerung** oder am **MIO2.1** befinden.

Einige Verbindungen können über andere Klemmen oder Hardware hergestellt werden.

Zusätzliche Informationen


Eine Übersicht über die Klemmen finden Sie unter Erläuterungen zu den Klemmenanschlüssen.

4.1.2 Bi-direktionale Kanäle

Ausgewählte Hardware verfügt über bi-direktionale Kanäle. Diese können entweder als Eingang oder als Ausgang konfiguriert werden.

Gemischte Nutzung mit Ein- und Ausgängen

Es ist möglich, eine Mischung aus Eingängen und Ausgängen auf derselben Klemmleiste zu verwenden.

4.1.3 Verdrahtungsbeispiel

Für jeden Steuerungstyp gibt es typische Verdrahtungspläne.

Jeder Steuerungstyp wird mit voreingestellten Ein- und Ausgängen geliefert.

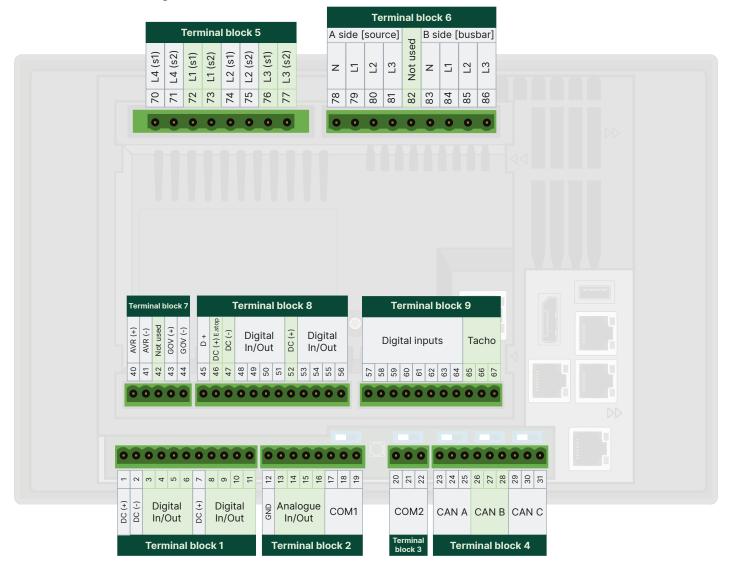
Zusätzliche Informationen

Siehe Typische Verdrahtung für die Verdrahtung der einzelnen Steuerungen.

Benutzerdefinierte Konfigurationen

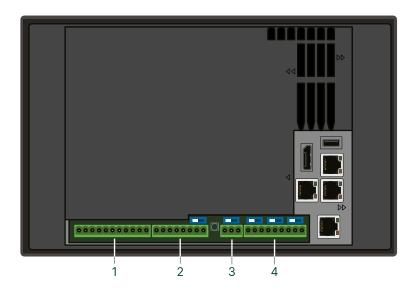
Sie können die Ein- und Ausgänge an andere Klemmen anschließen als in der Standardkonfiguration angegeben. Wir empfehlen Ihnen, die Abweichungen von der Standardkonfiguration zu dokumentieren.

Zusätzlich zur Standardverdrahtung kann der Konstrukteur Eingänge und Ausgänge entsprechend den spezifischen Anforderungen des Systems festlegen. Diese können die verfügbaren konfigurierbaren Verbindungen in der Hardware des Basis-Steuerungstyps und/oder die Verbindungen von zusätzlich installierten Modulen nutzen. Diese Verbindungen sind nicht in den Standard-Verdrahtungsplänen enthalten, sondern müssen in den Zeichnungen des Systemplaners dargestellt werden.


Sie können zusätzliche Hardwaremodule für zusätzliche Ein- und Ausgänge montieren und verwenden. Die Einzelheiten dieser Verbindungen sind anlagenspezifisch und müssen in den Zeichnungen des Anlagenplaners enthalten sein.

4.2 Klemmenanschlüsse

4.2.1 Erläuterungen zu den Klemmenanschlüssen


Verwenden Sie nur die von DEIF gelieferten Klemmenleisten. Verwenden Sie keine Ersatzprodukte.

Klemmen für Steuerung mit MIO2.1

Nr.	Ort	Anschlüsse
Klemmenblock 1	Steuerung	Leistung / Digitale bi-direktionale Kanäle
Klemmenblock 2	Steuerung	Analoge bi-direktionale Kanäle / COM1
Klemmenblock 3	Steuerung	COM2
Klemmenblock 4	Steuerung	CAN Kommunikation
Klemmenblock 5	MIO2.1	Wechselstrom CT-seitig [Quelle]
Klemmenblock 6	MIO2.1	Wechselspannung A-seitig, B-seitig
Klemmenblock 7	MIO2.1	Analoger DZR / SPR
Klemmenblock 8	MIO2.1	D+ / Digitale bi-direktionale Kanäle *
Klemmenblock 9	MIO2.1	Digitale Eingangskanäle / Tacho

4.2.2 Steuerung

Klemmenblock 1 Leistung / Digitale bi-direktionale Kanäle

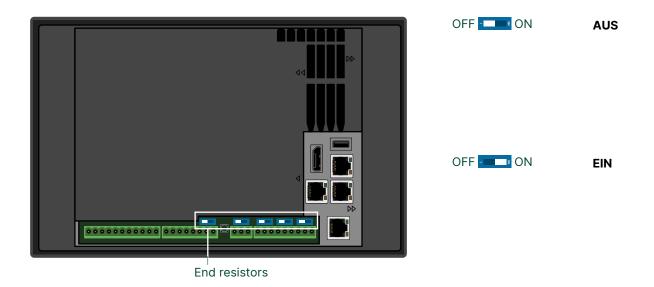
Klemme		
n	Funktion	Anmerkungen
1	Versorgung, DC (+)	Versorgung der Steuerung und der Kanäle 1 bis 4 (Klemmen 3 bis 6)
2	Versorgung, DC (-)	
3	Digitaler bi-direktionaler Kanal 1	
4	Digitaler bi-direktionaler Kanal 2	
5	Digitaler bi-direktionaler Kanal 3	
6	Digitaler bi-direktionaler Kanal 4	
7	Versorgung, DC (+)	Versorgung der Kanäle 5 bis 8 (Klemmen 8 bis 11).
8	Digitaler bi-direktionaler Kanal 5	
9	Digitaler bi-direktionaler Kanal 6	
10	Digitaler bi-direktionaler Kanal 7	
11	Digitaler bi-direktionaler Kanal 8	

Klemmenblock 2 Analoge bi-direktionale Kanäle / COM1

Reminension 2 Analogo Si allerctionale Randie / Oothi		
Klemme n	Funktion	Anmerkungen
12	ERDE	COM für analoge Kanäle
13	Analoger bi-direktionaler Kanal 1	
14	Analoger bi-direktionaler Kanal 2	
15	Analoger bi-direktionaler Kanal 3	
16	Analoger bi-direktionaler Kanal 4	
17	COM1 Daten + (A)	Der eingebaute Endwiderstand kann für den Abschluss verwendet werden.
18	COM1 Daten (Erde)	
19	COM1 Daten - (B)	

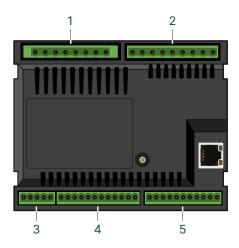
Klemmenblock 3 COM2

Klemme n	Funktion	Anmerkungen
20	COM2 Daten + (A)	Der eingebaute Endwiderstand kann für den Abschluss verwendet werden.
21	COM2 Daten (Erde)	
22	COM2 Daten - (B)	


Klemmenblock 4 CAN

- CAN A Power Management primär
- CAN B Power-Management-sekundär
- CAN C Motorschnittstellen-Kommunikation (ECU) oder digitaler SPR

Klemme n	Funktion	Anmerkungen
23	CAN A Hoch	Der eingebaute Endwiderstand kann für den Abschluss verwendet werden.
24	CAN A Daten (Erde)	
25	CAN A Niedrig	
26	CAN B Hoch	Der eingebaute Endwiderstand kann für den Abschluss verwendet werden.
27	CAN B Daten (Erde)	
28	CAN B Niedrig	
29	CAN C Hoch	Der eingebaute Endwiderstand kann für den Abschluss verwendet werden.
30	CAN C Daten (Erde)	
31	CAN C Niedrig	


Endwiderstände für CAN/COM (120 Ω Ohm)

Jeder COM- und CAN-Anschluss kann mit dem eingebauten Endwiderstand oberhalb des Anschlusses abgeschlossen werden.

Stellen Sie den Switch auf **EIN**, um den Endwiderstand zu verwenden.

4.2.3 Messeingang-Ausgangsmodul (MIO2.1)

Klemmenblock 5: AC-Strom CT-Seite

Klemme n	Funktion	Anmerkungen
70	L4 (S1)	Sie können s1 oder s2 für den Erdungsanschluss verwenden.
71	L4 (S2)	Sie konnen ST oder SZ für den Erdungsanschluss verwenden.
72	L1 (S1)	Sie kännen et eder et für den Erdungsenschluse verwenden
73	L1 (S2)	Sie können s1 oder s2 für den Erdungsanschluss verwenden.
74	L2 (S1)	Sie können et oder e2 für den Erdungsanschluss verwenden
75	L2 (S2)	Sie können s1 oder s2 für den Erdungsanschluss verwenden.
76	L3 (S1)	Sie können et oder e2 für den Erdungsanschluss verwenden
77	L3 (S2)	Sie können s1 oder s2 für den Erdungsanschluss verwenden.

Klemmenblock 6: Wechselspannung A-seitig [Quelle], B-seitig [Sammelschiene]

Actinicianock of Weenscispanniang A Setting [Adenie], B Setting [Sammerseinene]		
Funktion	Anmerkungen	
N		
L1	A-seitige [Quelle]-Spannungsmessungen	
L2	A-settige [Quelle]-Spannungsmessungen	
L3		
Nicht belegt		
N		
L1	B-seitige [Sammelschiene] Spannungsmessungen	
L2	b-settige [Sammerschiene] Spannungsmessungen	
L3		
	Funktion N L1 L2 L3 Nicht belegt N L1 L2	

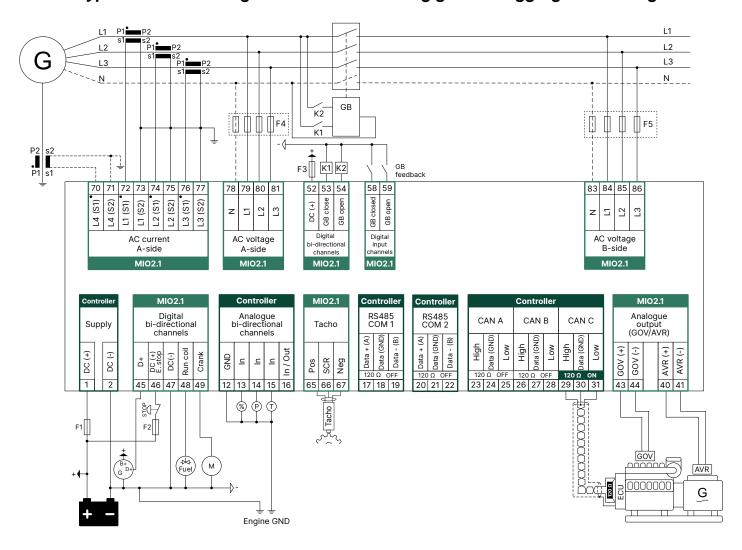
Klemmenblock 7: Analogausgang (DZR/SPR)

Klemme n	Funktion	Anmerkungen
40	SPR (+)	
41	SPR (-)	
42	Nicht belegt	

Klemme n	Funktion	Anmerkungen
43	DZR (+)	
44	DZR (-)	

Klemmenblock 8: Digitale bi-direktionale Kanäle und D+

Klemme	Funktion	Anmerkungen
n	Turktion	Annierkungen
45	D+	
46	DC (+) (E-Stopp)	Versorgung der Kanäle 9 bis 12 (Klemmen 48 bis 51).
47	DC (-)	Obligatorisch für analoge Tachos (NPN, PNP, W)
48	Digitaler bi-direktionaler Kanal 9	Eingang und Ausgang kann auch innerhalb von Gruppen erfolgen, keine Hardwarebeschränkungen für gemischte Kanäle. Negativschaltung
49	Digitaler bi-direktionaler Kanal 10	Eingang und Ausgang kann auch innerhalb von Gruppen erfolgen, keine Hardwarebeschränkungen für gemischte Kanäle. Negativschaltung
50	Digitaler bi-direktionaler Kanal 11	Eingang und Ausgang kann auch innerhalb von Gruppen erfolgen, keine Hardwarebeschränkungen für gemischte Kanäle. Negativschaltung
51	Digitaler bi-direktionaler Kanal 12	Eingang und Ausgang kann auch innerhalb von Gruppen erfolgen, keine Hardwarebeschränkungen für gemischte Kanäle. Negativschaltung
52	DC (+)	Versorgung der Kanäle 13 bis 16 (Klemmen 53 bis 56). Versorgung der Digitaleingänge 1 bis 8 (Klemmen 57 bis 64). Wenn Sie die Kanäle 13 bis 16 (Klemmen 53 bis 56) bei aktiviertem Not-Aus stromlos machen wollen, verwenden Sie die Gleichstromversorgung (+) von Klemme 46 zu dieser Klemme.
53	Digitaler bi-direktionaler Kanal 13	Eingang und Ausgang kann auch innerhalb von Gruppen erfolgen, keine Hardwarebeschränkungen für gemischte Kanäle.
54	Digitaler bi-direktionaler Kanal 14	Eingang und Ausgang kann auch innerhalb von Gruppen erfolgen, keine Hardwarebeschränkungen für gemischte Kanäle. Negativschaltung
55	Digitaler bi-direktionaler Kanal 15	Eingang und Ausgang kann auch innerhalb von Gruppen erfolgen, keine Hardwarebeschränkungen für gemischte Kanäle. Negativschaltung
56	Digitaler bi-direktionaler Kanal 16	Eingang und Ausgang kann auch innerhalb von Gruppen erfolgen, keine Hardwarebeschränkungen für gemischte Kanäle. Negativschaltung


Klemmenblock 9: Digitaleingangskanäle und Tacho

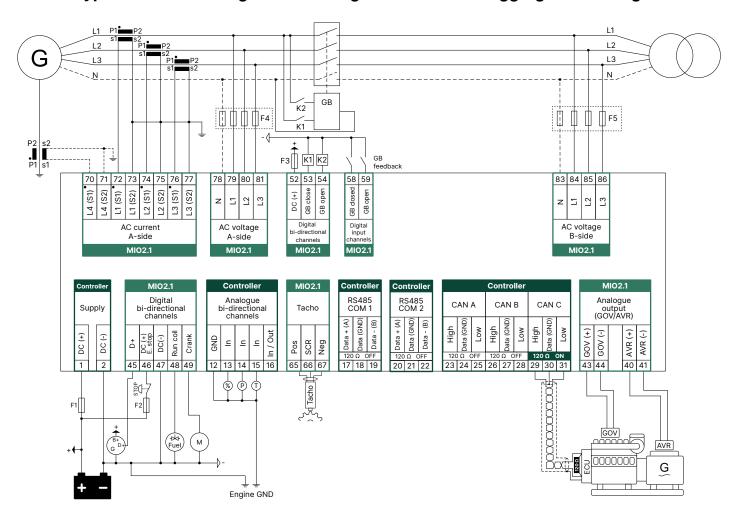
Klemme n	Funktion	Anmerkungen
57	Digitaleingang 1	Negativschaltung
58	Digitaleingang 2	Negativschaltung
59	Digitaleingang 3	Negativschaltung
60	Digitaleingang 4	Negativschaltung
61	Digitaleingang 5	Negativschaltung

Klemme n	Funktion	Anmerkungen
62	Digitaleingang 6	Negativschaltung
63	Digitaleingang 7	Negativschaltung
64	Digitaleingang 8	Negativschaltung
65	Tacho Pos.	
66	Tacho SCR	
67	Tacho-Negativ	

4.3 Verdrahtungsbeispiel

4.3.1 Typische Verdrahtung für eine netzunabhängige Einzelaggregatsteuerung (GLS)

ANMERKUNG CAN C ist an ein ECU angeschlossen, wobei der Endwiderstand auf EIN gesetzt ist.


Sicherungen

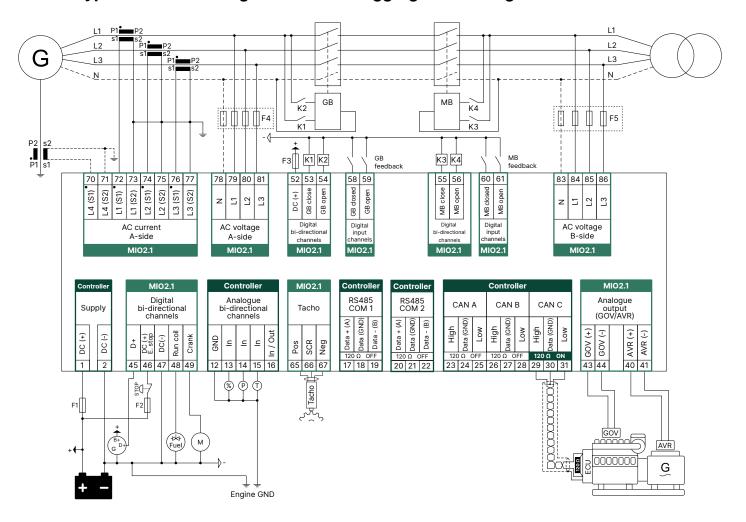
F1: 2 A DC max. träge Sicherung/MCB, C-Kurve

F2: 6 A DC max. träge Sicherung/MCB, C-Kurve

F3: 4 A DC max. träge Sicherung/MCB, B-Kurve

4.3.2 Typische Verdrahtung für eine netzgebundene Einzelaggregatsteuerung (GLS)

ANMERKUNG CAN C ist an ein ECU angeschlossen, wobei der Endwiderstand auf EIN gesetzt ist.


Sicherungen

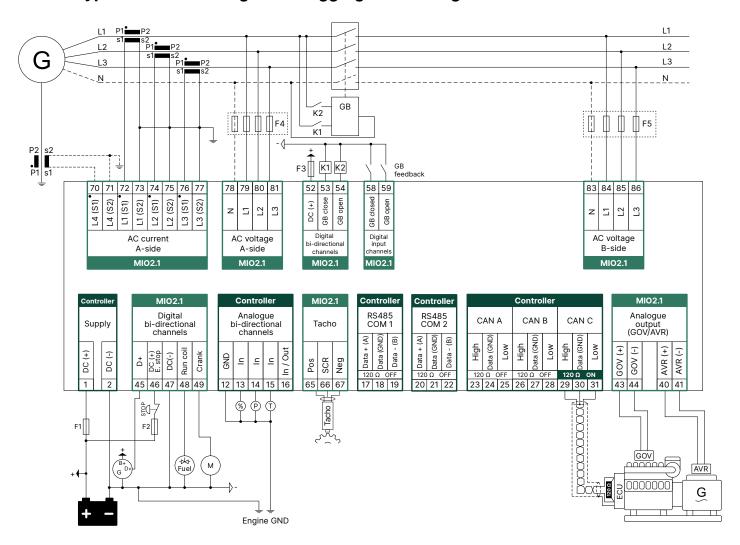
F1: 2 A DC max. träge Sicherung/MCB, C-Kurve

F2: 6 A DC max. träge Sicherung/MCB, C-Kurve

F3: 4 A DC max. träge Sicherung/MCB, B-Kurve

4.3.3 Typische Verdrahtung für eine Einzelaggregatsteuerung (GLS+NLS)

ANMERKUNG CAN C ist an ein ECU angeschlossen, wobei der Endwiderstand auf EIN gesetzt ist.


Sicherungen

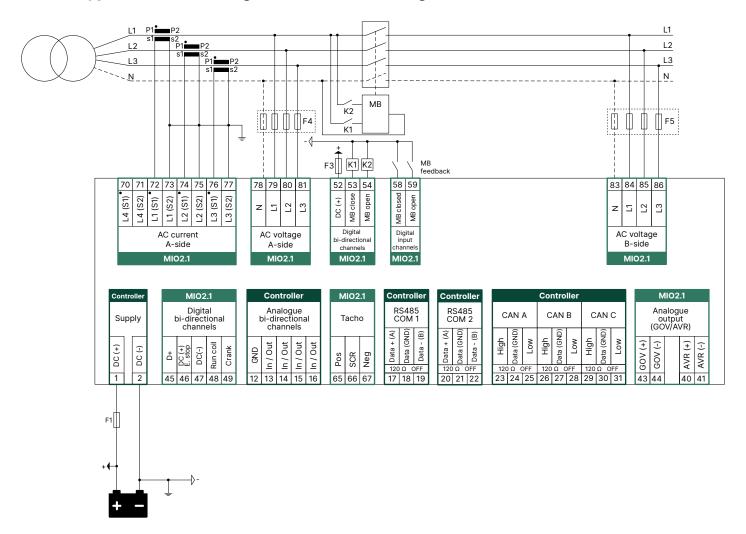
F1: 2 A DC max. träge Sicherung/MCB, C-Kurve

F2: 6 A DC max. träge Sicherung/MCB, C-Kurve

F3: 4 A DC max. träge Sicherung/MCB, B-Kurve

4.3.4 Typische Verdrahtung für die Aggregatsteuerung (GLS)

ANMERKUNG CAN C ist an ein ECU angeschlossen, wobei der Endwiderstand auf EIN gesetzt ist.

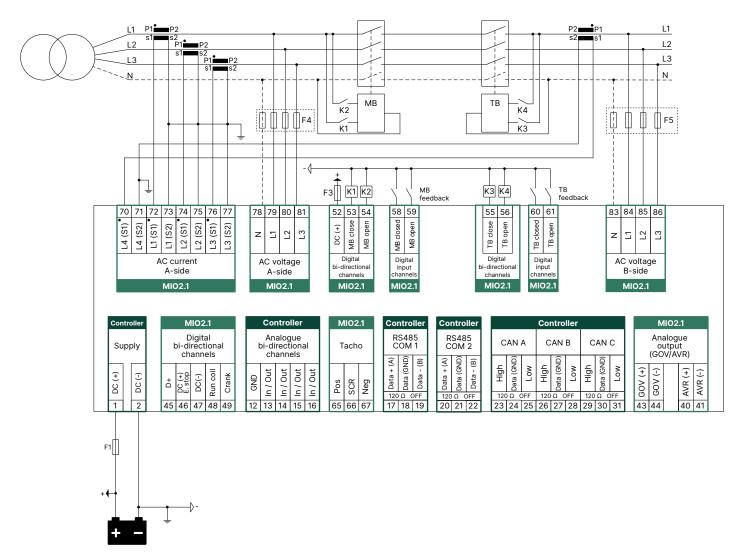

Sicherungen

F1: 2 A DC max. träge Sicherung/MCB, C-Kurve

F2: 6 A DC max. träge Sicherung/MCB, C-Kurve

F3: 4 A DC max. träge Sicherung/MCB, B-Kurve

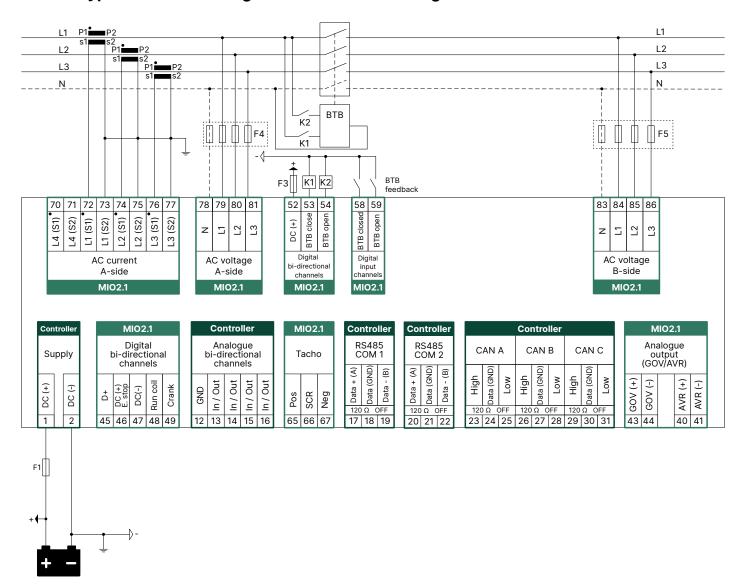
4.3.5 Typische Verdrahtung für die Netzsteuerung



Sicherungen

F1: 2 A DC max. träge Sicherung/MCB, C-Kurve

F3: 4 A DC max. träge Sicherung/MCB, B-Kurve


4.3.6 Typische Verdrahtung für eine Netzsteuerung (NLS+KS)

Sicherungen

F1: 2 A DC max. träge Sicherung/MCB, C-Kurve F3: 4 A DC max. träge Sicherung/MCB, B-Kurve

4.3.7 Typische Verdrahtung für eine SKS-Steuerung

Sicherungen

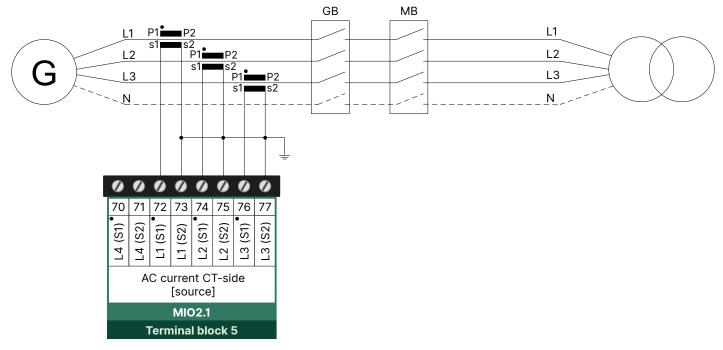
F1: 2 A DC max. träge Sicherung/MCB, C-Kurve F3: 4 A DC max. träge Sicherung/MCB, B-Kurve

F4 und F5: 2 A AC max. träge Sicherung/MCB, C-Kurve

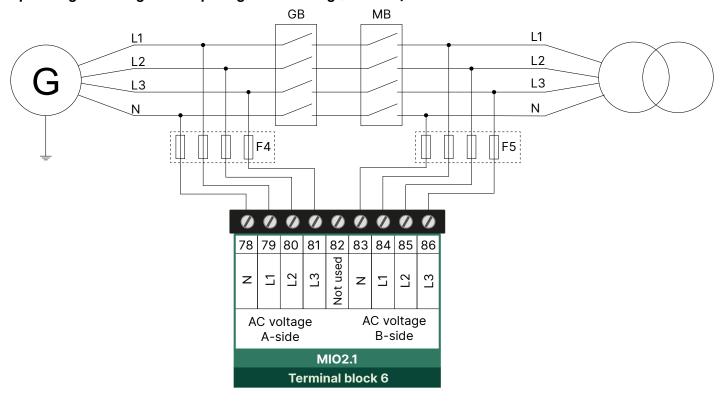
4.4 AC Verdrahtung

4.4.1 AC-Anschlüsse

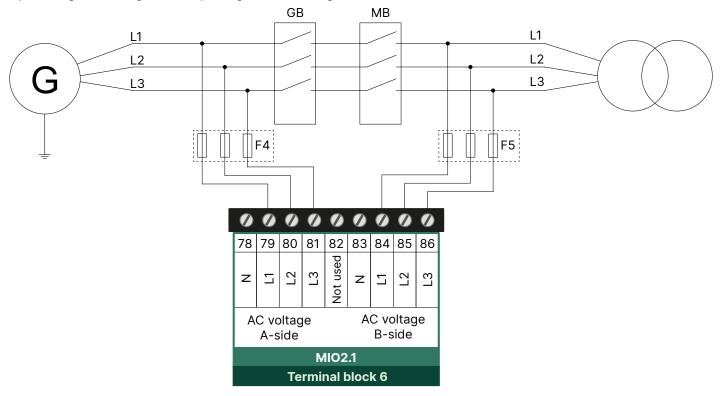
Die Steuerung kann in Dreiphasen-, Einphasen- oder Einphasen-Dreileiter-Konfiguration verdrahtet werden.

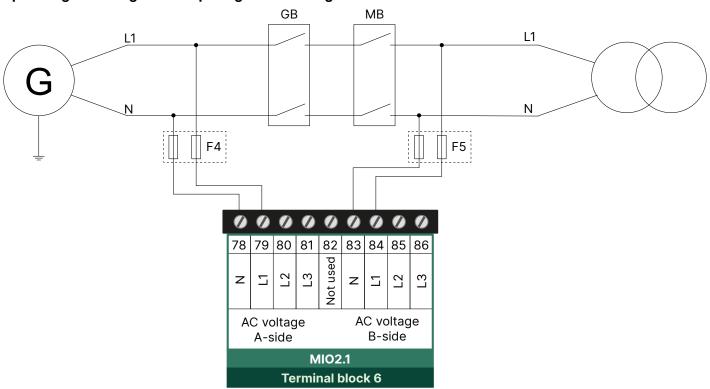

Die Parameter zum Einrichten des AC-Anschlusses finden Sie unter:

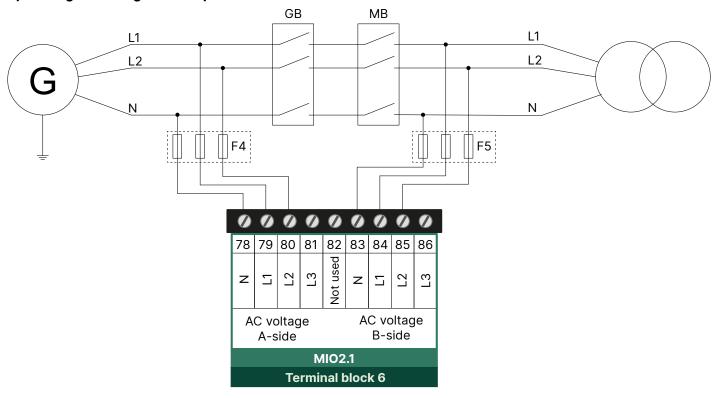
Generator > AC Setup

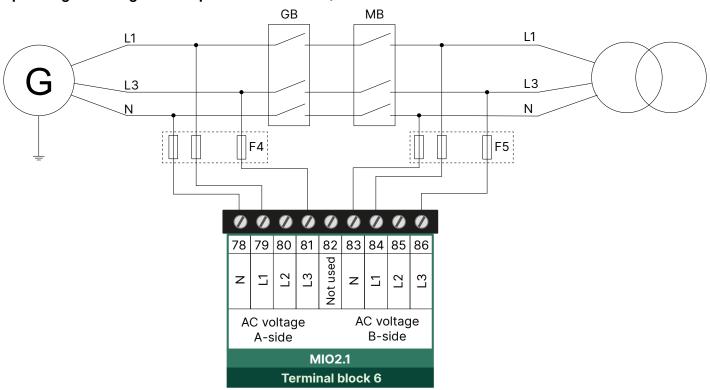

ANMERKUNG W

Wenden Sie sich an den Hersteller der Schaltanlage, um Informationen über die für die jeweilige Anwendung erforderliche Verkabelung zu erhalten.


Stromwandler für 3-phasige Anwendung

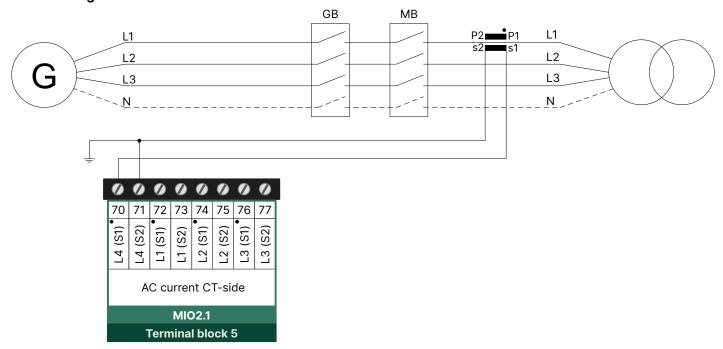

Spannungsmessungen für 3-phasige Anwendung (4 Drähte)


Spannungsmessungen für 3-phasige Anwendung (3 Drähte)

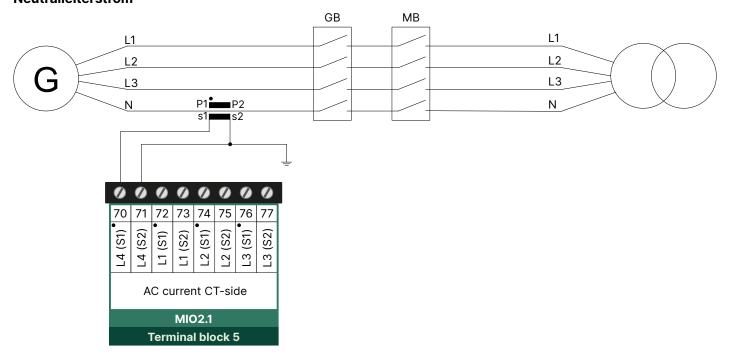

Spannungsmessungen für einphasige Anwendungen

Spannungsmessungen für Einphasen-Dreileiter L1/L2

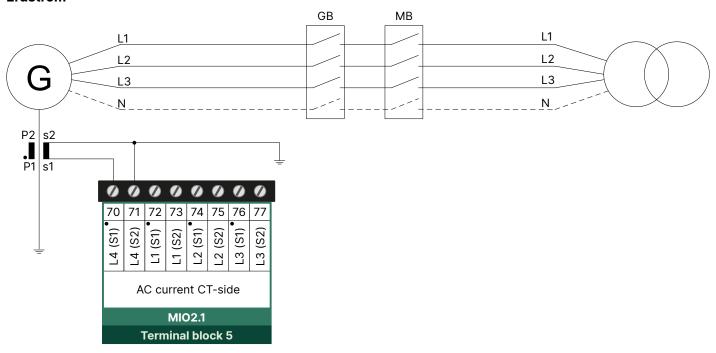
Spannungsmessungen für Einphasen-Dreileiter L1/L3

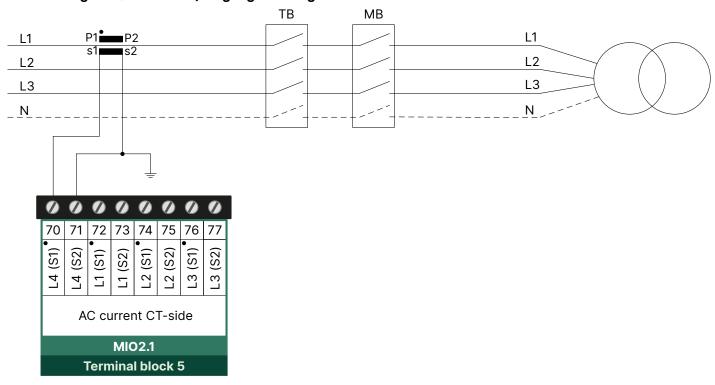


F4, F5: 2 A AC max. Absicherung/MCB, C-Kurve


4.4.2 | 14 Strom

Die Klemmen L4 können zur Messung des Wechselstroms verwendet werden. Die folgenden Konfigurationen sind möglich (je nach Steuerungstyp).


Netzleistung


Neutralleiterstrom

Erdstrom

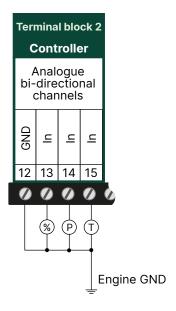
Netzsteuergerät (AGC Mains) Abgangsleistung

4.4.3 Stromwandler Erdung

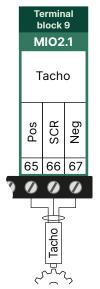
Die Erdung des Stromwandlers kann am Anschluss s1 oder s2 erfolgen.

Wenn ein Stromwandler nicht geerdet wird, kann dies zu Verletzungen oder zum Tod führen.

Stellen Sie sicher, dass jeder Stromwandler geerdet ist.

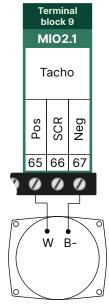

4.4.4 Sicherungen zur Spannungsmessung

Falls die Drähte/Kabel mit Sicherungen geschützt werden müssen, verwenden Sie träge Sicherungen mit max. 2A, je nach den zu schützenden Drähten/Kabeln.


4.4.5 Analogeingänge

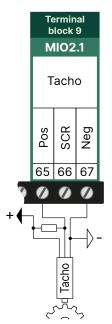
Analoge Sensoreingänge

Alle Sensoren müssen mit der Motor-Masse verbunden sein.

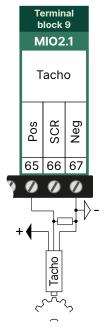

Analoger Tachoeingang (MPU)

Schließen Sie den Kabelschirm an die Klemme 66 (SCR) an.

Erden Sie das Kabel nicht.


Analoger Tachoeingang (W)

Charging alternator


Bei W-Anschlüssen muss die Klemme 47 DC (-) mit der Batterie (-) verbunden werden.

Analoger Tachoeingang (NPN)

Bei NPN-Anschlüssen muss die Klemme 47 DC (-) mit der Batterie (-) verbunden werden.

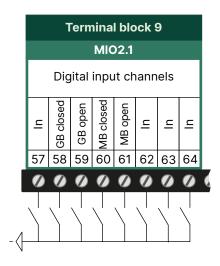
Analoger Tachoeingang (PNP)

Bei PNP-Anschlüssen muss die Klemme 47 DC (-) mit der Batterie (-) verbunden werden.

Für die meisten 12-V-Systeme wird ein Widerstand mit einem Wert zwischen 1 k Ω und 2,2 k Ω verwendet. Für die meisten 24-V-Systeme wird ein Widerstand mit einem Wert von 2,2 k Ω verwendet.

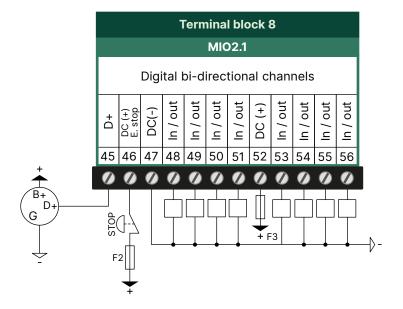
HINWEIS

Siehe Sensor-Datenblatt



Den empfohlenen Widerstandswert oder die maximale Stromsenke entnehmen Sie bitte immer dem Datenblatt des Sensorherstellers.

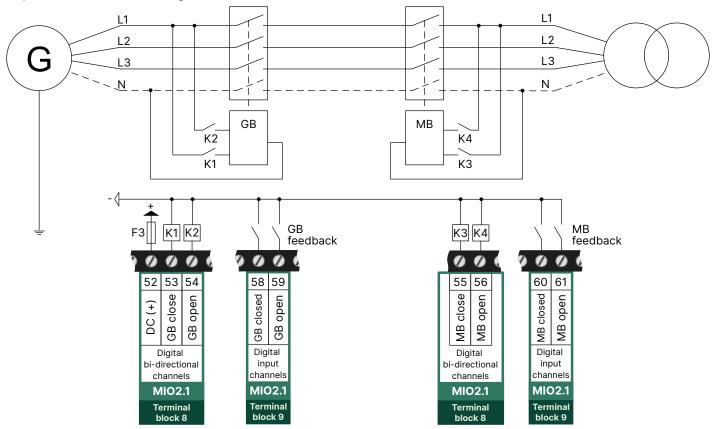
Bei einigen Sensoren kann der Widerstand bereits eingebaut sein, so dass kein externer Widerstand erforderlich ist.


4.5 DC Verdrahtung

4.5.1 Digitaleingänge

ANMERKUNG Die DC(+)-Versorgungsleitung (entweder Klemme 46 oder Klemme 52) muss aktiv sein, damit diese Klemmen funktionieren

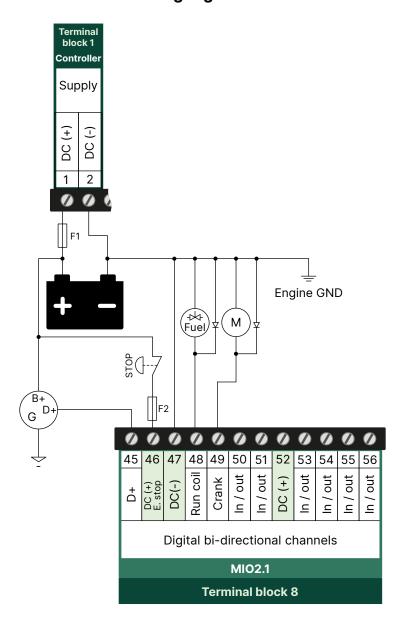
4.5.2 Digitale bi-direktionale Kanäle



Sicherungen

F2: 6 A DC max. träge Sicherung/MCB, C-Kurve F3: 4 A DC max. träge Sicherung/MCB, B-Kurve

4.5.3 Schutzschalterverkabelung

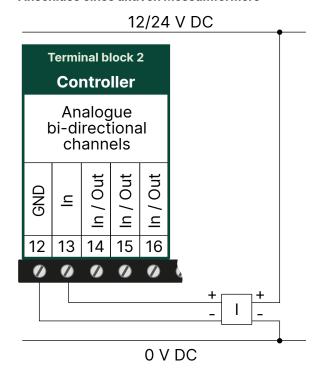

Impulsschalterverkabelung

Wenn Klemme 52 DC (+) anstelle von Klemme 46 DC (+) verwendet wird, dann wird der Not-Aus die Klemmen nicht entladen.

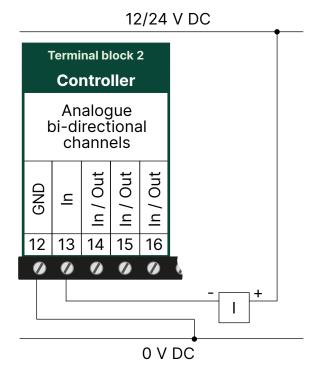
Sicherung F3: 4 A DC max. träge Sicherung/MCB, B-Kurve

4.5.4 Stromversorgung und Start

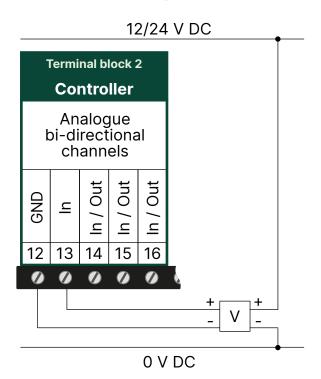
Sicherungen


- F1: 2 A DC max. träge Sicherung/MCB, C-Kurve
- F2: 6 A DC max. träge Sicherung/MCB, C-Kurve
- F3: 4 A DC max. träge Sicherung/MCB, B-Kurve

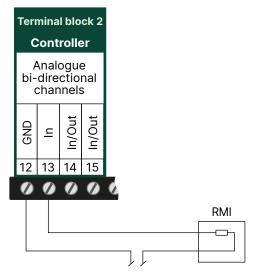
ANMERKUNG * Denken Sie daran, die Freilaufdioden zu montieren.


4.5.5 Verdrahtung der Stromeingänge

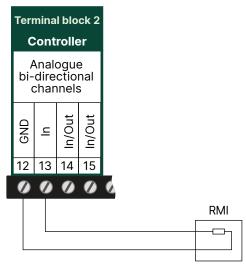
Der Stromeingang kann entweder aktiv oder passiv sein, und es kann eine Kombination aus aktiven und passiven Eingängen verwendet werden.


Anschluss eines aktiven Messumformers

Anschluss eines passiven Messumformers

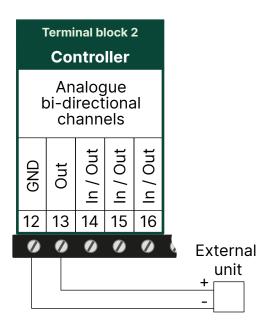


4.5.6 Beschaltungsvarianten der Spannungsabgriffe



4.5.7 Verdrahtung des Widerstandseingangs

Anschluss eines 1-Draht-Widerstandsmesseingangs (RMI)

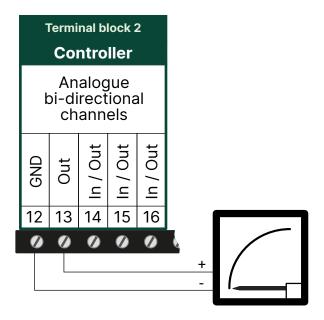


Anschluss eines 2-Draht-Widerstandsmesseingangs (RMI)

4.5.8 Verdrahtung der Analogausgänge

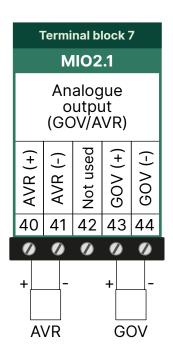
Das untenstehende Diagramm zeigt den Anschluss einer externen Steuerung an den analogen Strom- oder Spannungsausgang der DEIF-Steuerung. Die E/A-Konfiguration bestimmt, ob der Ausgang Strom oder Spannung ist.

HINWEIS



Klemmenschäden

Diese Ausgänge sind aktive Ausgänge. Schließen Sie keine externe Stromversorgung an diese Klemmen an. Der Anschluss einer externen Stromversorgung kann die Anschlüsse beschädigen.


Verwendung eines Analogausgangs mit einem externen Instrument

Der Analogausgang kann direkt an ein externes 4 bis 20-mA-Gerät angeschlossen werden:

DEIF empfiehlt die Verwendung von Instrumenten der DEIF DQ Drehspulinstrumentenserie. Für weitere Informationen, siehe www.deif.com.

Das folgende Diagramm zeigt den Anschluss eines Reglers und eines SPR an den analogen Spannungs- oder Pulsweitenmodulationsausgang des MIO. Die E/A-Konfiguration bestimmt, ob der Ausgang spannungs- oder pulsbreitenmoduliert ist.

HINWEIS

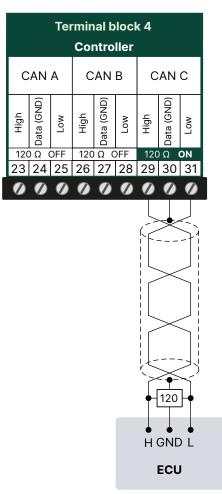
Klemmenschäden

Diese Ausgänge sind aktive Ausgänge. Schließen Sie keine externe Stromversorgung an diese Klemmen an. Der Anschluss einer externen Stromversorgung kann die Anschlüsse beschädigen.

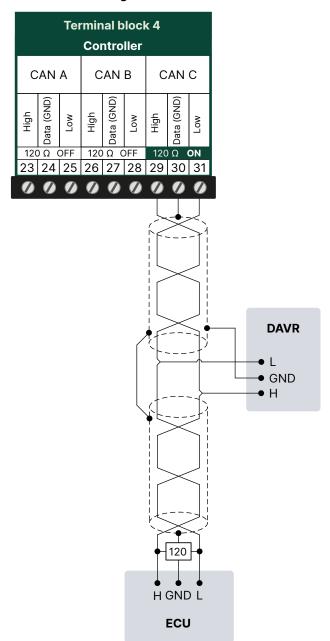
4.6 Kommunikationsverdrahtung

4.6.1 Empfohlene Kommunikationskabel

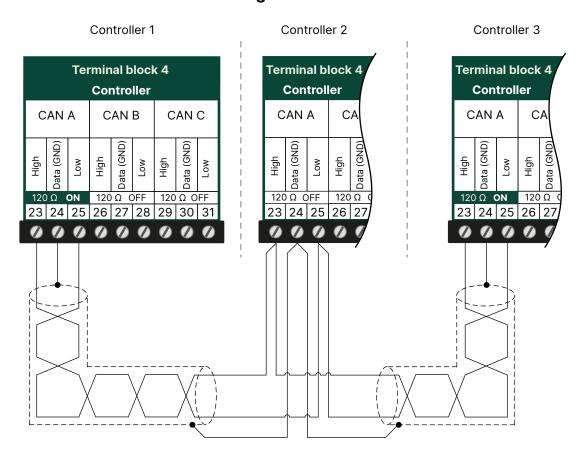
CAN-Kommunikation (Motor, DSPR, Energieverwaltung) RS-485-Kommunikation (Modbus)

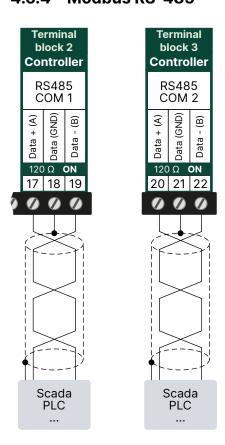

Belden 3105A oder gleichwertig, 22 AWG (0,33 mm²) verdrilltes Kabel, geschirmt, Impedanz 120 Ω (Ohm), < 40 m Ω /m, min. 95 % Schirmdeckung.

EtherCAT-Kommunikation (Erweiterungsrack)


Das Kabel muss die SF/UTP CAT5e-Spezifikation erfüllen oder übertreffen.

4.6.2 CAN-Bus Motorkommunikation


Nur ECU


DSPR und ECU am gleichen CAN-Bus

4.6.3 CAN-Bus-Power-Management

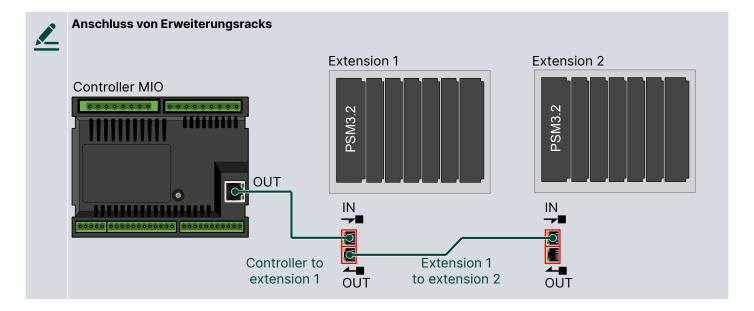
4.6.4 Modbus RS-485

4.6.5 Kommunikation mit Erweiterungsracks

Erweiterungsracks werden über den EtherCAT-Anschluss am MIO mit der Steuerung verbunden. Verwenden Sie diesen Anschluss nicht für andere Kommunikationen.

ANMERKUNG EtherCAT-Ringverbindungen sind nicht möglich.

Interne Kommunikationsanforderungen


Der AUS-Anschluss muss immer mit dem EIN-Anschluss des nächsten Erweiterungsracks verbunden werden.

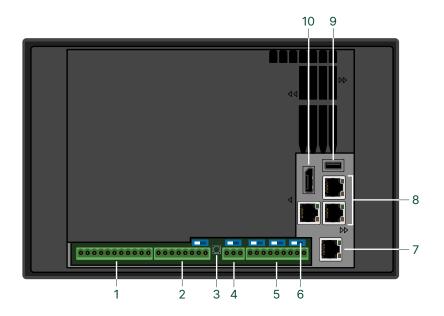
Schalten Sie die Erweiterungsracks aus, bevor Sie sie mit einer anderen Steuerung austauschen oder wieder anschließen.

- Bis zu 5 Erweiterungsracks können an dieselbe Steuerung angeschlossen werden.
- Die Kabel dürfen nicht länger als 100 Meter von Punkt zu Punkt sein.
- Die Kabel müssen die SF/UTP CAT5e-Spezifikation erfüllen oder übertreffen.
- Die Steuerung und das Erweiterungsrack müssen direkt miteinander verbunden werden (ohne einen Switch dazwischen).

Anforderungen an das EtherCAT-Kabel

- Die Kabel dürfen nicht länger als 100 Meter von Punkt zu Punkt sein.
- Die Kabel müssen die SF/UTP CAT5e-Spezifikation erfüllen oder übertreffen.
- Der Biegeradius des Kabels darf nicht enger sein als der von den Kabelherstellern angegebene Mindestbiegeradius.
 - Wir empfehlen Ihnen, stets die Biegeradiusvorgaben des Kabelherstellers zu beachten.
 - Es wird empfohlen, für die Ethernet-Kabel Klettbänder (und keine Kabelbinder) zu verwenden.

5. Technische Daten


5.1 Umweltspezifikationen

Betriebsbedingungen	
Betriebstemperatur	-30 bis 70 °C
Lagertemperatur	-30 bis 80 °C (-22 bis 176 °F)
Temperaturänderung	70 bis -30 °C, 1 °C / Minute, 5 Zyklen. Gemäß IEC 60255-1
Betriebshöhe	0 bis 4000 m über Meeresspiegel 2001 bis 4000 m: Maximal 480 V AC
Betriebsfeuchtigkeit	Feuchte Wärme, zyklisch, 20/55 °C bei 97 % relativer Luftfeuchtigkeit, 144 Stunden. Gemäß IEC 60255-1 Feuchte Wärme, beständig, 40 °C bei 93 % relativer Luftfeuchtigkeit, 240 Stunden. Gemäß IEC 60255-1
Schutzart	 EN IEC 60529 IP65 (Vorderseite des Moduls bei Einbau in die Schalttafel mit der mitgelieferten Dichtung) IP20 auf der Klemmenseite
Vibration	Reaktionsverhalten: 10 bis 58,1 Hz, 0.15 mmpp 58,1 bis 150 Hz, 1 g. Gemäß IEC 60255-21-1 (Klasse 2) Belastbarkeit: 10 bis 150 Hz, 2 g. Gemäß IEC 60255-21-1 (Klasse 2) Seismische Vibration: 3 bis 8,15 Hz, 15 mmpp 8,15 bis 35 Hz, 2 g. Gemäß IEC 60255-21-3 (Klasse 2)
Schock	10 g, 11 ms, halbe Sinuswelle. Gemäß IEC 60255-21-2 Reaktionsverhalten (Klasse 2) 30 g, 11 ms, halbe Sinuswelle. Gemäß IEC 60255-21-2 Widerstand (Klasse 2) 50 g, 11 ms, halbe Sinuswelle. Gemäß IEC 60068-2-27, Test Ea Getestet mit drei Einwirkungen in jede Richtung in drei Achsen (insgesamt 18 Einwirkungen pro Test)
Einzelstoß	20 g, 16 ms, halbe Sinuswelle IEC 60255-21-2 (Klasse 2) Getestet mit 1000 Einwirkungen in jede Richtung auf drei Achsen (insgesamt 6000 Einwirkungen pro Test)
Steuerung, galvanische Trennung	Versorgung und DIO 1 bis 8: 550 V, 50 Hz, 1 Min. AIO 1 bis 4: 550 V, 50 Hz, 1 Min. COM 1 (RS-485): 550 V, 50 Hz, 1 Min. COM 2 (RS-485): 550 V, 50 Hz, 1 Min. CAN A: 550 V, 50 Hz, 1 Min. CAN B: 550 V, 50 Hz, 1 Min. CAN C: 550 V, 50 Hz, 1 Min. Ethernet-Anschluss 1 550 V, 50 Hz, 1 Min. Ethernet-Anschluss 2 550 V, 50 Hz, 1 Min. Ethernet-Anschluss 3 550 V, 50 Hz, 1 Min. Ethernet-Dienstanschluss: 550 V, 50 Hz, 1 Min.
Anschlüsse der Steuerung ohne galvanische Trennung	Display-Anschluss, USB-Anschluss
MIO2.1 Galvanische Trennung	DZR: 550 V, 50 Hz, 1 Min. SPR: 3000 V, 50 Hz, 1 Min. Wechselstrom über interne Transformatoren (I4, I1, I2, I3): 2210 V, 50 Hz, 1 Min.

Betriebsbedingungen		
	Wechselspannung A-seitig [Quelle], (N, L1, L2, L3): 3310 V, 50 Hz, 1 Min. Wechselspannung B-seitig ([Sammelschiene]) (N, L1, L2, L3): 3310 V, 50 Hz, 1 Min. EtherCAT-Anschluss: 550 V, 50 Hz, 1 Min.	
MIO2.1-Klemmen ohne galvanische Trennung	D+ und DIO 9 bis 16, DI 1 bis 8 und Tacho	
Sicherheit	Installation CAT. III 600 V Verschmutzungsgrad 2 IEC 60255-27	
Brennbarkeit	Alle Kunststoffteile sind selbstverlöschend nach UL94-V0	
EMV	IEC 60255-26	

5.2 Steuerung

5.2.1 Klemmenanschlüsse

Nr.	Funktion	Anmerkungen
1	Spannungsversorgung Digitale bi-direktionale Kanäle *	1 Stromversorgung (DC+/-) 8 bi-direktionale digitale Kanäle * DC(+) für DIO 4 bis 8
2	COM 1 ** Analoge bi-direktionale Kanäle	1 RS-485 ** 4 bi-direktionale analoge Kanäle
3	Drucktaste **	
4	COM 2 **	1 RS-485 **
5	CAN	3 CAN-Anschlüsse
6	Endwiderstände	5 Switches zur Aktivierung der Endwiderstände
7	Ethernet	1 Ethernet-Verbindung zum Service-PC
8	Ethernet	3 Ethernet-Switch-Verbindungen
9	USB **	USB-Host (Typ A)
10	Display-Anschluss ***	Zur Verwendung mit auf einer Basis montierten Geräten.***

- **ANMERKUNG** * Schalterfunktionen müssen den MIO-Kanälen zugewiesen werden.
 - ** Zur zukünftigen Verwendung.
 - *** Erfragen Sie die Verfügbarkeit bei DEIF.

Elektrische Spezifikationen 5.2.2

Leistungsversorgung		
Eingangsspannung	Nennspannung: 12 V DC oder 24 V DC (Betriebsbereich: 6,5 bis 36 V DC) Einschalten bei 8 V Betrieb bis zu 6,5 V bei 15 W Betrieb bis zu 6,9 V bei 28 W	
Spannungswiderstand	Umgekehrte Polarität	
Ausfallsicherheit der Stromversorgung	0 V DC für 50 ms (ausgehend von mehr als 6,5 V DC) bei 15 W	
Spannungsversorgung, Lastabwurfschutz	Lastabwurf geschützt nach ISO16750-2 Test A	
Stromverbrauch	15 W typisch 28 W maximal	

Messung der Batteriespannung	
Genauigkeit	±0,8 V innerhalb 8 bis 32 V DC, ±0,5 V innerhalb 8 bis 32 V DC @ 20 °C

Analoge bi-direktionale Kanäle

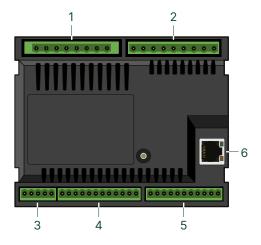
4 einzelne Kanäle (isolierte Gruppe) mit konfigurierbarer Funktion. Konfigurierbar als Eingangs- oder Ausgangskanäle. Galvanische Trennung zur CPU

Alle Kanäle in einer elektrischen Gruppe

Cinasasas	/ O IO O	_
Eingangs	Kanai	е

Digitaleingang	0 bis 24 V DC mit gemeinsamer Schwelle 4 V	
Widerstandsmessung	Bereich: 0 bis 1 M Ω Genauigkeit 0 bis 80 Ω : ±1 % ±0,5 Ω 80 Ω bis 20 k Ω : ±0.4 % ±0.5 Ω 20 bis 200 k Ω : ±2,0 %. 200 bis 1000 k Ω : ±15 %	
Spannungseingang	0 bis +10 V DC (16-Bit-Sigma-Delta) Genauigkeit: 0,3 % des Skalenendwerts über den Betriebstemperaturbereich.	
Stromeingang	0 bis 20 mA (16-Bit-Sigma-Delta) Genauigkeit: 0,3 % des Skalenendwerts über den Betriebstemperaturbereich.	
Ausgangskanäle		
Spannungsausgang	0 bis +10 V DC (13-Bit-Auflösung) Genauigkeit: 0,3 % des Skalenendwerts über den Betriebstemperaturbereich.	
Stromausgang	0 bis 20 mA (13-Bit-Auflösung) Genauigkeit: 0,3 % des Skalenendwerts über den Betriebstemperaturbereich. Maximal 2 Kanäle können als Stromausgang gewählt werden (interne Leistungsbegrenzung)	

Digitale bi-direktionale Kanäle		
8 einzelne Kanäle (eine galvanisch getrennte Gruppe) mit konfigurierbarer Funktion. Negativschaltung Konfigurierbar als Eingangs- oder Ausgangskanäle.		
Digitaleingangskanäle	0 bis 24 V DC Stromquelle (Kontaktreinigung) Anfangsstrom 10 mA, Dauerstrom 2 mA Negativschaltung	
Digitalausgangskanäle	 Ausgangsspannung: 12 bis 24 V DC Die Ausgangsspannung des High-Side-Switch ist abhängig von DC+ Die DIO-Kanäle 1 bis 4 verwenden Klemme 1. Die DIO-Kanäle 5 bis 8 verwenden Klemme 7. 2 A DC-Einschaltstrom und 0,5 A Dauerstrom (maximal 2 A Dauerstrom für alle Kanäle) 	


5.2.3 Spezifikationen für die Kommunikation

Spezifikationen für die Kommunikation		
CAN A CAN B CAN	Motor-, DVC- oder Power-Management (isoliert) Datenverbindung 2-Draht und COM (isoliert) Switch 120 Ω (Ohm) Abschlusswiderstände	
COM 1 (RS-485) *	Datenverbindung 2-Draht und COM (isoliert) 9600 bis 115200 Baud Switch 120 Ω (Ohm) Abschlusswiderstände	
COM 2 (RS-485) *	Datenverbindung 2-Draht und COM (isoliert) 9600 bis 115200 Baud Switch 120 Ω (Ohm) Abschlusswiderstände	
USB *	USB-Host (Typ A)	
3 Ethernet *	Switch für Ethernet-Verbindungen	
Ethernet	Nur für den Anschluss an den Service-PC	
DisplayPort **	Nur für auf einer Basis montierte Geräte Anschluss an ein lokales Display	

- **ANMERKUNG** * Zur zukünftigen Verwendung
 - ** Erfragen Sie die Verfügbarkeit bei DEIF.

5.3 Messeingang, Ausgangsmodul (MIO2.1)

5.3.1 Klemmenanschlüsse

Nr.	Funktion	Anmerkungen
1	Wechselstrom über Stromwandler	A-seitig ([Quelle]): L1 (S1,S2) L2 (S1,S2) L3 (S1,S2) A-seitig ([Quelle]) oder B-seitig ([Sammelschiene]): L4 (S1,S2)
2	Wechselspannung	A-seitig ([Quelle]): N, L1, L2, L3 B-seitig ([Sammelschiene]): N, L1, L2, L3
3	Analogausgang (DZR/SPR)	SPR (+/-) DZR (+/-)
4	D+ und digitale bi-direktionale Kanäle	D+ Not-Aus-Eingang (E-Stopp) 8 bi-direktionale, konfigurierbare Kanäle
5	Digitaleingangskanäle und Tacho	8 Digitaleingänge Tacho
6	EtherCAT	Anschluss an Erweiterungsracks

5.3.2 Elektrische Spezifikationen

Alle Spezifikationen liegen innerhalb der Referenzbedingungen, sofern nicht anders angegeben.

Spannungsmessungen	
Nennwert (Un)	100 bis 690 V AC
Referenzbereich	30 bis 931,5 V AC
Messbereich:	5,0 bis 931,5 V AC, Abschneidung 2 V AC
Genauigkeit	5,0 bis 931,5 V AC: ±0,5 % oder ±0,5 V AC (der größere Wert gilt)
UL/cUL gelistet	600 V AC Phase-Phase
Verbrauch	Maximal 0,25 VA/Phase
Spannungswiderstand	Un + 35 % kontinuierlich

Spannungsmessungen

Un + 45 % für 10 Sekunden

Alle Spannungen sind Phase-Phase-Wechselspannungen.

Strommessungen		
Nennwert (IN)	1 oder 5 A AC vom Stromwandler	
Messbereich:	0,005 bis 20,0 A AC, Abschneidung 4 mA AC	
Genauigkeit	0,005 bis 20,0 A AC: ±0,5 % oder ±5 mA AC (der größere Wert gilt)	
UL/cUL gelistet	Von Liste oder R/C (XODW2.8) Stromwandlern 1 oder 5 A AC	
erbrauch Maximal 0,3 VA/Phase		
Stromwiderstand	10 A AC kontinuierlich 20 A AC für 1 Minute 75 A AC für 10 Sekunden 250 A AC für 1 Sekunde	

Frequenzmessungen	
Nennwert	50 Hz oder 60 Hz
Referenzbereich	45 bis 66 Hz
Messbereich:	10 bis 75 Hz
System-Frequenzen	Genauigkeit: 10 bis 75 Hz: ±5 mHz, innerhalb des Temperaturbetriebsbereichs
Phasenfrequenzen	Genauigkeit: 10 bis 75 Hz: ±10 mHz, innerhalb des Temperaturbetriebsbereichs

Messung des Phasenwinkels (Spannung)	
Messbereich:	179,9 bis 180°
Genauigkeit	-179,9 bis 180° 0,2°, innerhalb des Temperaturbetriebsbereichs

Leistungsmessung	
Genauigkeit	± 0.5 % vom Messwert oder ± 0.5 % von Un * IN , je nachdem, welcher Wert größer ist, innerhalb des aktuellen Messbereichs

AC Messtemperatur und -genauigkeit	
AC Referenzbereich der Messung	-20 bis 55 °C
Temperaturabhängige Genauigkeit außerhalb des Referenzbereichs	Spannung: Zusätzlich: ±0,05 % oder ±0,05 V AC pro 10 °C (18 °F) (je nachdem, welcher Wert größer ist) Strom: Zusätzlich: ±0,05 % oder ±0,5 mA AC pro 10 °C (18 °F) (je nachdem, welcher Wert größer ist) Power: Zusätzlich: ±0,05 % oder ±0,05 % von Un * IN pro 10 °C (18 °F) (je nachdem, welcher Wert größer ist)

Digitale Eingangskanäle

8 individuelle Eingangskanäle mit konfigurierbarer Funktion.

Negativschaltung

Stromquelle (Kontaktreinigung) Anfangsstrom 10 mA, Dauerstrom 2 mA.

D+	
Erregerstrom	210 mA, 12 V 105 mA, 24 V
Ladefehler-Schwellenwert	6 V

Tacho	
Spannungseingangsbereich	±1 Vp bis 70 Vp
W	8 bis 36 V
Frequenzeingangsbereich	10 bis 10 kHz
Toleranz der Frequenzmessung	1% der Anzeige
Drahtbrucherkennung	Ja

Digitale bi-direktionale Kanäle

8 bi-direktionale digitale Kanäle mit konfigurierbarer Funktion.

Alle Kanäle in einer elektrischen Gruppe.

Konfigurierbar als Eingangs- oder Ausgangskanäle.

Digitaleingang	0 bis 24 V DC Negativschaltung Stromquelle (Kontaktreinigung) Anfangsstrom 10 mA, Dauerstrom 2 mA
Digitalausgang	 Versorgungsspannung: 12 bis 24V (Arbeitsbereich 6,5 bis 28 V DC) DIO-Kanäle 9 bis 12 Versorgung an Klemme 46 DC (+) E. Stopp DIO-Kanäle 13 bis 16 Versorgung an Klemme 52 Ausgangsstrom: Bis zu 0,5 A (maximal 1 A für alle 4 Kanäle) 2 A DC-Einschaltstrom und 0,5 A Dauerstrom (maximal 2 A Dauerstrom für alle Kanäle)

Analogausgang für DZR oder SPR	
Ausgangsarten für DZR oder SPR	DC-Ausgang oder PWM
Minimaler Lastwiderstand	500 Ω (Ohm) oder 20 mA

DZR	
Gleichspannungs-Ausgangsbereich	-10,5 bis 10,5 V DC
PWM-Ausgangsspannung	Anwendung 6 V konfigurierbar mit CODESYS
CODESYS konfigurierbar	-10,5 bis +10,5 V
PWM-Frequenzbereich	1 bis 2500 Hz ±25 Hz
Auflösung der PWM-Arbeitszyklen	12 Bit (4096 Schritte)
Genauigkeit	Genauigkeit: ±1 % der Einstellung

Automatischer Spannungsregler (SPR)	
Gleichspannungs-Ausgangsbereich	-10,5 bis 10,5 V DC
PWM-Ausgangsspannung	Standard 6 V, konfigurierbar in der Plattformebene über EtherCAT im Bereich 1 bis 10,5 V Anwendungsebene an Plattformkonfiguration gebunden
CODESYS konfigurierbar	-10,5 bis +10,5 V

Automatischer Spannungsregler (SPR)	
PWM-Frequenzbereich	1 bis 2500 Hz ±25 Hz
Auflösung der PWM-Arbeitszyklen	12 Bit (4096 Schritte)
Genauigkeit	Genauigkeit: ±1 % der Einstellung

5.3.3 Spezifikationen für die Kommunikation

EtherCAT	
EtherCAT-Kommunikation	RJ45 Es muss ein Ethernet-Kabel verwendet werden, das die SF/UTP CAT5e-Spezifikationen erfüllt oder übertrifft.

6. Ende der Nutzungsdauer

6.1 Entsorgung von Elektro- und Elektronikaltgeräten

Alle Produkte, die mit der durchgestrichenen Mülltonne (WEEE-Symbol) gekennzeichnet sind, sind Elektro- und Elektronikgeräte (EEE). EEE umfasst Materialien, Komponenten und Substanzen, die gefährlich und schädlich für die Gesundheit der Menschen und die Umwelt sein können. Elektro- und Elektronikaltgeräte (WEEE) müssen daher ordnungsgemäß entsorgt werden. In Europa wird die Entsorgung von Elektro- und Elektronik-Altgeräten durch die WEEE-Richtlinie des Europäischen Parlaments geregelt. DEIF hält sich strikt an diese Richtlinie.

Sie dürfen WEEE nicht als unsortierten Siedlungsabfall entsorgen. Stattdessen müssen Elektro- und Elektronik-Altgeräte getrennt gesammelt werden, um die Umweltbelastung zu minimieren und die Möglichkeiten des Recyclings, der Wiederverwendung und/oder der Verwertung zu verbessern. In Europa sind die Kommunalverwaltungen für die Anlagen zum Empfang von Elektro- und Elektronik-Altgeräten verantwortlich. Wenn Sie weitere Informationen zur Entsorgung von WEEE benötigen, die von DEIF stammen, wenden Sie sich bitte an DEIF.