AGC 150 Inselbetrieb

Handbuch für Konstrukteure

1. Einführung

1.1 Erläuterungen	6
1.1.1 Übersicht der Funktionen	6
1.1.2 Steuerungstypen	7
1.2 Erläuterungen zum Handbuch für Konstrukteure	8
1.2.1 Softwareversion	g
1.3 Warnhinweise und Sicherheit	9
1.3.1 Symbole für Gefahrenhinweise	g
1.3.2 Symbole für allgemeine Hinweise	g
1.4 Rechtliche Hinweise	10
2. Utility Software USW	
2.1 Laden Sie die Utility-Software herunter	12
2.2 Anschluss	
2.2.1 USB-Verbindung	12
2.2.2 TCP-Verbindung	12
2.3 Verwendung von NTP	15
2.4 Schnittstelle zur Utility-Software	15
2.4.1 Obere Symbolleiste	15
2.4.2 Menü auf der linken Seite	16
2.5 Einrichtung von Anwendungen	18
2.5.1 Anwendungen in der Steuerung	18
2.5.2 Einrichtung einer eigenständigen Anwendung	19
3. Anwendungen	
3.1 Inselbetrieb	21
3.2 Notstrombetrieb	23
3.3 Auswählen der Aggregatbetriebsart	24
4. Grundfunktionen	
4.1 Passwort	25
4.2 AC-Messsysteme	
4.2.1 Dreiphasensystem	
4.2.2 Zweiphasensystem	
4.2.3 Einphasensystem	
4.2.4 Mittelwertbildung bei AC-Messungen	
4.2.5 AC-Konfiguration	
4.3 Nenneinstellungen	29
4.3.1 Standard-Nenneinstellungen	30
4.3.2 Alternative Nenneinstellungen	31
4.3.3 Skalierung	31
4.4 Übersicht über Betriebsarten	32
4.4.1 Betriebsart SEMI-AUTO	32
4.4.2 Betriebsart TEST	33
4.4.3 Betriebsart MANUELL	34
4.4.4 Betriebsart BLOCKIEREN	35
4.4.5 Nicht in AUTO	35
4.5 Schalter	36
4.5.1 Schaltertypen	
4.5.2 Federspannzeit	36
4.5.3 Schalterpositionsfehler	37

4.6 Alarme	37
4.6.1 Fehlerklassen	37
4.6.2 Unterdrückungsfunktionen	39
4.6.3 Alarmlistenüberwachung	39
4.7 M-Logic	39
4.7.1 Allgemeine Schnellzugriffe	40
4.7.2 Oneshots	41
4.7.3 Virtuelle Umschaltereignisse	41
4.7.3.1 Virtuelle Umschaltereignisse	41
4.7.4 Flipflop-Funktion	41
4.7.5 Virtuelle Schalterereignisse	42
4.7.6 Steuerung im SPS-Modus	42
4.7.7 M-Logic-Ereigniszähler	44
4.7.8 Ereignisse bei Betätigung von Display-Schaltflächen	44
4.8 Timer und Zähler	45
4.8.1 Befehls-Timer	45
4.8.2 Impulszähler	45
4.8.3 Diagnose-Timer	45
4.9 Schnittstellen	46
4.9.1 Zusätzliche Bedientafel, AOP-2	46
4.9.2 Zugriffssperre	46
4.9.3 Auswahl der Sprache	47
4.9.4 Übersetzungen	47
i. Motorfunktionen	
5.1 Motorsequenzen	E0
5.2 Motorstartfunktionen	
5.2.1 Startsequenz	
5.2.2 Bedingungen Start-Sequenz	
5.2.3 Anlaufübersicht	
5.2.4 Startfunktionen	
5.2.5 Digitale Rückmeldungen	
5.2.6 Analoges Tachosignal	
5.2.7 Öldruck	
5.3 Rückmeldung "Motor läuft"	
5.3.1 Startsequenz, Rückmeldung "Motor-läuft"	
5.3.2 Betriebsverzögerungszeit	
5.3.3 Abbruch der Startsequenz	
5.3.4 MPU-Drahtbruch	
5.3.5 D+ (Ausfall des Ladegenerators)	
5.3.6 Ausgang "Motor läuft"	
5.3.6 Ausgang "Wotor lauft	
5.41 Stoppsequenz	
5.4.1 Stoppsequenz-Befehle für den Generator	
····	
5.4.3 Einstellungen zur Stoppsequenz	
5.4.4 Stoppsequenz-Flussdiagramm	
5.5 Leerlauf	
5.5.1 Temperaturabhängiger Leerlaufstart	
5.5.2 Unterdrückung	
5.5.3 Motor-läuft-Signal	69

5.5.4 Flußdiagramme Leerlaufdrehzahl	69
5.6 Motorschutzvorrichtungen	71
5.6.1 Überdrehzahl	71
5.6.2 Unterdrehzahl	72
5.6.3 MK-Überdrehzahl	72
5.7 Motorkommunikation	72
5.8 Motorvorwärmer	73
5.8.1 Motorvorheizungsalarm	74
5.9 Lüftung	74
5.9.1 Max. Lüftungsalarme	74
5.10 Pumpenlogik	75
5.10.1 Füllpumpenlogik	75
5.10.2 DEF-Pumpenlogik	76
5.10.3 Allgemeine Pumpenlogik	77
5.11 SDU 104-Integration	78
5.12 Weitere Funktionen	79
5.12.1 Wartungstimer	79
5.12.2 Schlüsselschalter	79
5.12.3 Keine Drehzahlregelung	80
5.12.4 Nicht unterstützte Anwendung	80
6. Generatorfunktionen	
6.1 Display, Tasten und LEDs	81
6.2 Anwendungsarten	82
6.3 Generatorschalter	82
6.3.1 Schaltereinstellungen	82
6.3.2 Schaltersequenzen	82
6.3.3 Flussdiagramme	84
6.3.4 Schalterfehler	85
6.4 Eingänge und Ausgänge	86
6.4.1 Digitaleingangsfunktionen	86
6.4.2 Funktionen des Relaisausgangs	89
6.5 Weitere Funktionen	90
6.5.1 Belastung durch Spitzenströme	90
6.5.2 Keine Spannungsregelung	91
7. Netzfunktionen	
7.1 Netzschalter	92
7.1.1 Schaltereinstellungen	92
7.1.2 Schaltersequenzen	92
7.1.3 Flussdiagramme	96
7.1.4 Digitale Netzschaltersteuerung	97
7.1.5 Schalterfehler	97
8. AC-Schutzfunktionen	
8.1 Über Schutzfunktionen	99
8.1.1 Schutzfunktionen im Allgemeinen	99
8.1.2 Phase-Null-Spannungsalarme	99
8.1.3 Phasenfolgefehler und Phasendrehung	100
8.2 Generatorschutzvorrichtungen	100
8.2.1 Überspannung (ANSI 59)	101
8.2.2 Unterspannung (ANSI 27)	101

8.2.3 Spannungsasymmetrie (ANSI 47)	102
8.2.4 Überstrom (ANSI 50TD)	102
8.2.5 Schneller Überstrom (ANSI 50/50TD)	103
8.2.6 Stromasymmetrie (ANSI 46)	103
8.2.7 Spannungsabhängiger Überstrom (ANSI 50V)	104
8.2.8 Abhängiger Überstrom, Nullleiter (ANSI 50N)	106
8.2.9 Abhängiger Überstrom, Erdschluss (ANSI 50G)	106
8.2.10 Neutralleiter-Überstrom (4. Stromwandler)	107
8.2.11 Erdschluss-Überstrom (4. Stromwandler)	108
8.2.12 Überfrequenz (ANSI 810)	108
8.2.13 Unterfrequenz (ANSI 81U)	109
8.2.14 Überlast (ANSI 32)	109
8.2.15 Niedrige Leistung	110
8.2.16 Rückleistung (ANSI 32R)	110
8.2.17 Blindleistungsesxport (ANSI 400)	111
8.2.18 Blindleistungsimport (ANSI 40U)	111
8.3 Sammelschiene, Standardschutzfunktionen	112
8.3.1 Sammelschienenüberspannung (ANSI 59)	112
8.3.2 Sammelschienenunterspannung (ANSI 27)	
8.3.3 Sammelschienen-Spannungsasymmetrie (ANSI 47)	
8.3.4 Sammelschienenüberfrequenz (ANSI 810)	114
8.3.5 Sammelschienenunterfrequenz (ANSI 81U)	114
8.4 Netzschutz	115
8.4.1 Überstrom (4. Stromwandler)	
8.4.2 Überlast (4. Stromwandler)	
8.4.3 Rückleistung (4. Stromwandler)	116
8.5 Zusätzliche Schutzfunktionen	
8.5.1 AC-Mittelwert	117
9. Eingänge und Ausgänge	
9.1 Digitaleingänge	119
9.1.1 Standard-Digitaleingänge	119
9.1.2 Digitaleingänge konfigurieren	119
9.1.3 Benutzerdefinierte Alarme	120
9.2 DC Relaisausgänge	121
9.2.1 Konfigurieren Sie einen Relaisausgang	122
9.3 Analogeingänge	122
9.3.1 Einführung	122
9.3.2 Anwendungsbeschreibung	123
9.3.3 Konfigurieren von Multieingängen	123
9.3.4 Alarme	124
9.3.5 Drahtbruch	125
9.3.6 RMI-Sensortypen	126
9.3.7 Differenzialmessung	127
9.4 Verwendung eines Analogausgangs als Messumformer	129

1. Einführung

1.1 Erläuterungen

Die AGC 150-Steuerung für den Inselbetrieb bietet flexible Schutz und Kontrollfunktionen für ein Aggregat in nichtsynchronisierenden Anwendungen. Die Steuerung enthält alle Funktionen, die zum Schutz und zur Kontrolle des Aggregats, des Aggregatschalters und auch eines Netzschalters erforderlich sind.

Die AGC 150 ist eine kompakte Komplettsteuerung. Jede AGC 150 enthält alle erforderlichen dreiphasigen Messkreise.

Alle Werte und Alarme werden auf dem sonnenlichttauglichen LCD-Display angezeigt. Die Bediener können das Aggregat und die Leistungsschalter einfach über die Displayeinheit steuern. Alternativ können Sie die Kommunikationsoptionen nutzen, um eine Verbindung zu einem HMI/SCADA-System herzustellen.

1.1.1 Übersicht der Funktionen

Hier finden Sie einen Überblick über die wichtigsten Funktionen.

Betriebsarten

- Inselbetrieb
- Notstrombetrieb (AMF)

Motorsteuerung

- · Start- und Stoppsequenzen
- · Betriebs- und Stoppmagnet

Generatorschutzvorrichtungen

- 2 x Rückleistung (ANSI 32R)
- 5 x Überlast (ANSI 32F)
- 4 x Überstrom (ANSI 50TD)
- 2 x Überspannung (ANSI 59P)
- 3 x Unterspannung (ANSI 27P)
- 3 x Über-Frequenz (ANSI 810)
- 3 x Unterfrequenz (ANSI 81U)
- Spannungsabhängiger Überstrom (ANSI 50V)
- Spannungsasymmetrie (ANSI 47)
- Stromasymmetrie (ANSI 48)
- Untererregung (ANSI 32RV)
- Übererregung (ANSI 32FV)
- Multi-Eingänge (digital, 4–20 mA, 0–10 V DC, Pt100, RMI oder binär/digital)
- Digitaleingänge

Sammelschienen-/Netzschutzfunktionen

- 3 x Überspannung (ANSI 59P)
- 4 x Unterspannung (ANSI 27P)
- 3 x Über-Frequenz (ANSI 810)
- 3 x Unterfrequenz (ANSI 81U)
- Spannungsasymmetrie (ANSI 47)

Display

· Separate Montage möglich

- · Tasten für Start und Stopp
- · Tasten für Schalteransteuerung
- Statustexte
- Messwerte
- ECU-Daten
- Alarmanzeige

M-Logic

- · Logisches Verknüpfungstool
- · Wählbare Eingangsereignisse
- · Wählbare Ausgangsbefehle

1.1.2 Steuerungstypen

Parameter	Einstellung	Art der Steuerung	Mindestsoft ware
	DG-Einheit	Aggregatesteuerung	S2
	DG-Einheit	Generator für eigenständige Steuerung	S1
	Netzgerät	Netzsteuerung	S2
	SKS-Einheit	SKS-Steuerung	S2
	DG-Hybridgerät	Aggregat-Solar-Hybridsteuerung	S2
	Motorantriebs-Einheit	Motorantriebsregler	S1
	Entfernte Einheit	Fernanzeige	Keine
9101	MOTORANTRIEB MARITIM	Motorantriebssteuerung für den maritimen Gebrauch	S1
	DG MARITIM	Eigenständige Aggregatsteuerung für den maritimen Gebrauch	S1
	ASC 150-Speichersteuerung*	Batterie-Speichersteuerung	S3
	ASC150-Solarsteuerung	Solarsteuerung	S3
	ATS Einheit	Automatischer Transferschalter (offener Übergang)	S1
	ATS Einheit	Automatischer Transferschalter (geschlossener Übergang)	S2
	DG PMS LITE	PMS Lite-Steuerung	S2

Softwarepakete und Steuerungstypen

Das Steuerungssoftwarepaket entscheidet darüber, welche Funktionen die Steuerung verwenden kann.

- S1 = Inselbetrieb
 - Sie können den Steuerungstyp auf jede andere Steuerung umstellen, die die S1-Software verwendet.
- S2 = Core
- S3 = Erweitert
 - Sie können den Steuerungstyp auf jeden anderen Steuerungstyp umstellen*.
 - * Um auf eine ASC 150 zu wechseln, muss die Steuerung über die Nachhaltigkeitsoption (S10) verfügen.
- S4 = Premium
 - Sie können den Steuerungstyp auf jeden anderen Steuerungstyp umstellen*.
 - * Um auf eine ASC 150 zu wechseln, muss die Steuerung über die Nachhaltigkeitsoption (S10) verfügen.
 - Alle Funktionen werden unterstützt.

1.2 Erläuterungen zum Handbuch für Konstrukteure

Allgemeiner Zweck

Dieses Dokument enthält Informationen über die Funktionalität der Steuerung und ihre Anwendungen sowie über ihre Konfiguration.

VORSICHT

Installationsfehler

Lesen Sie dieses Dokument, bevor Sie mit der Steuerung arbeiten. Eine Nichtbeachtung dieses Hinweises kann zu Personen- und Sachschäden führen.

Zielgruppe des Handbuchs für Konstrukteure

Das Handbuch für Konstrukteure ist in erster Linie für den verantwortlichen Schaltanlagenkonstrukteure gedacht. Auf der Grundlage dieses Dokuments kann der Schaltanlagenkonstrukteure dem Elektriker die notwendigen Informationen für die Installation der Steuerung geben, z. B. detaillierte elektrische Zeichnungen.

Das Handbuch für Konstrukteure kann auch während der Inbetriebnahme verwendet werden, um die Parameter zu überprüfen. Außerdem werden die Bediener es für das Verständnis des Systems und für die Fehlersuche nützlich finden.

Liste der technischen Dokumentation

Dokument	Inhalt
Produktblatt	 Kurzbeschreibung Steuerungsanwendungen Hauptmerkmale und -funktionen Technische Daten Schutzfunktionen Abmessungen
Datenblatt	 Allgemeine Beschreibung Funktionen und Merkmale Steuerungsanwendungen Steuerungstypen und -varianten Schutzfunktionen Eingänge und Ausgänge Technische Spezifikationen
Handbuch für Konstrukteure	 Prinzipien Allgemeine Steuerungssequenzen, Funktionen und Schutzfunktionen Schutzfunktionen und Alarme Regelung Hardwaremerkmale Kommunikation
Installationsanweisung	 Werkzeuge und Materialien Montage Minimale Verkabelung für die Steuerung Informationen und Beispiele zur Verdrahtung

Dokument	Inhalt	
Kurzbedienungsanleitung	 Steuerungsgeräte (Druckknöpfe und LEDs) Betrieb des Systems Alarme und Protokoll 	
Modbus-Tabellen	 Modbus-Adressliste SPS-Adressen Entsprechende Steuerungsfunktionen Beschreibungen zu Funktionscodes, Funktionsgruppen 	

1.2.1 Softwareversion

Dieses Dokument basiert auf der Software-Version 1.20 für AGC 150.

1.3 Warnhinweise und Sicherheit

1.3.1 Symbole für Gefahrenhinweise

Dies zeigt gefährliche Situationen.

Wenn die Richtlinien nicht befolgt werden, führen diese Situationen zu Tod, schweren Verletzungen, Beschädigung oder Zerstörung von Geräten.

WARNUNG

Dies zeigt potenziell gefährliche Situationen.

Wenn die Richtlinien nicht befolgt werden, können diese Situationen zu Tod, schweren Verletzungen, Beschädigung oder Zerstörung von Geräten führen.

VORSICHT

Dies zeigt Situationen mit geringem Risiko.

Wenn die Richtlinien nicht befolgt werden, können diese Situationen zu leichten oder mittelschweren Verletzungen führen.

HINWEIS

Dies zeigt einen wichtigen Hinweis.

Lesen Sie unbedingt diese Informationen.

1.3.2 Symbole für allgemeine Hinweise

ANMERKUNG Allgemeine Informationen

Zusätzliche Informationen

Hier erfahren Sie, wo Sie weitere Informationen finden können.

Beispiel

Dies zeigt ein Beispiel.

Wie man ...

Hier finden Sie einen Link zu einem Video mit Hilfe und Anleitung.

Sicherheit bei Installation und Betrieb

Die Installation und der Betrieb der Steuerung kann den Umgang mit Strömen und Spannungen erfordern. Die Installation darf nur von autorisiertem Personal durchgeführt werden, das mit den Gefahren beim Arbeiten mit elektrischen Geräten vertraut ist.

Werkseinstellungen

Die Steuerung wird werkseitig mit einer Reihe von Standardeinstellungen vorprogrammiert ausgeliefert. Diese Einstellungen beruhen auf typischen Werten und sind für Ihr System möglicherweise nicht angemessen. Sie müssen daher alle Parameter überprüfen, bevor Sie die Steuerung verwenden.

Elektrostatische Entladung

Elektrostatische Entladungen können die Steuerklemmen beschädigen. Sie müssen die Klemmen während der Installation vor elektrostatischer Entladung schützen. Wenn die Steuerung installiert und angeschlossen ist, sind diese Sicherheitsmaßnahmen nicht mehr notwendig.

Datensicherheit

Um das Risiko von Datenschutzverletzungen zu minimieren, empfiehlt DEIF Folgendes:

- Vermeiden Sie nach Möglichkeit, Steuerungen und Steuerungsnetzwerke öffentlichen Netzen und dem Internet auszusetzen.
- Verwenden Sie zusätzliche Sicherheitsebenen wie VPN für den Fernzugriff und installieren Sie Firewall-Mechanismen.
- · Beschränken Sie den Zugriff auf autorisierte Personen.

1.4 Rechtliche Hinweise

Geräte von Drittanbietern

DEIF übernimmt keine Verantwortung für die Installation oder den Betrieb von Geräten Dritter, einschließlich des Aggregats.

Garantie

HINWEIS

Garantie

Die Steuerung darf nicht von Unbefugten geöffnet werden. Sollte das Gerät dennoch geöffnet werden, führt dies zu einem Verlust der Gewährleistung.

Haftungsausschluss

DEIF A/S behält sich das Recht vor, jeden Teil dieses Dokumentes ohne Vorankündigung abzuändern.

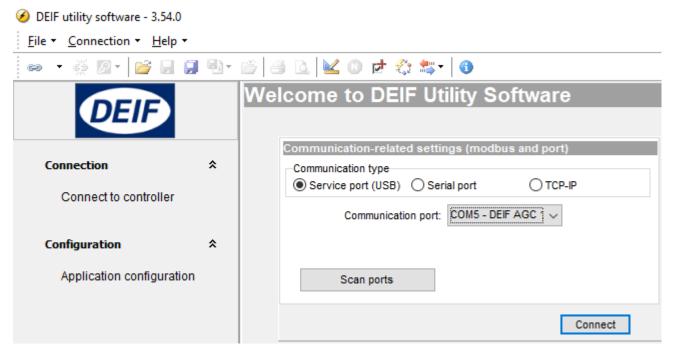
Die englische Version dieses Dokuments enthält stets die neuesten und aktuellsten Informationen über das Produkt. DEIF übernimmt keine Verantwortung für die Genauigkeit der Übersetzungen und Übersetzungen werden eventuell nicht zur selben Zeit wie das englische Dokument aktualisiert. Im Falle von Unstimmigkeiten hat das englische Dokument Vorrang.

Urheberrecht

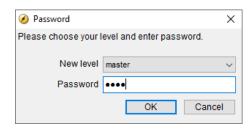
© Copyright DEIF A/S. Alle Rechte vorbehalten.

2. Utility Software USW

2.1 Laden Sie die Utility-Software herunter


Die **Multi-line 2 Utility Software v.3.x** ist die Softwareschnittstelle zwischen einem PC und der Steuerung. Die Software ist kostenlos. Laden Sie sie von www.deif.com herunter.

2.2 Anschluss


2.2.1 USB-Verbindung

Für den Anschluss der Steuerung an einen PC wird ein USB-Kabel (USB A auf B) verwendet:

- 1. Installieren Sie die Utility-Software auf einem PC.
- 2. Verwenden Sie das USB-Kabel, um den Serviceanschluss der Steuerung mit dem PC zu verbinden.
- 3. Starten Sie die Utility-Software.

- 4. Wählen Sie eine Service-Port-Option.
- 5. Wenn Sie dazu aufgefordert werden, wählen Sie die Zugriffsebene, geben Sie das Passwort ein und wählen Sie OK.

Zusätzliche Informationen

Siehe Allgemeine Funktionen, Passwort für die Standard-Passwörter.

2.2.2 TCP-Verbindung

Für die Verbindung zur Steuerung können Sie TCP/IP-Kommunikation verwenden. Dazu ist ein Ethernet-Kabel oder eine Verbindung mit dem Netzwerk erforderlich, in dem sich die Steuerung befindet.

Standard-Netzwerkadresse der Steuerung

• IP: 192.168.2.2

Gateway: 192.168.2.1

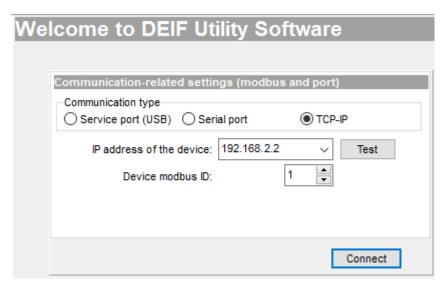
Subnetzmaske: 255.255.255.0

Konfigurieren der IP-Adresse der Steuerung über die Displayeinheit oder eine USB-Verbindung

Wenn Sie eine Verbindung zu einer Steuerung über TCP/IP herstellen, müssen Sie die IP-Adresse der Steuerung kennen. Suchen Sie die IP-Adresse auf dem Display unter: Kommunikation > Ethernet-Setup

Sie können die IP-Adresse der Steuerung über das Display ändern.

Alternativ können Sie eine USB-Verbindung oder eine Ethernet-Verbindung und die Utility-Software verwenden, um die IP-Adresse der Steuerung zu ändern.

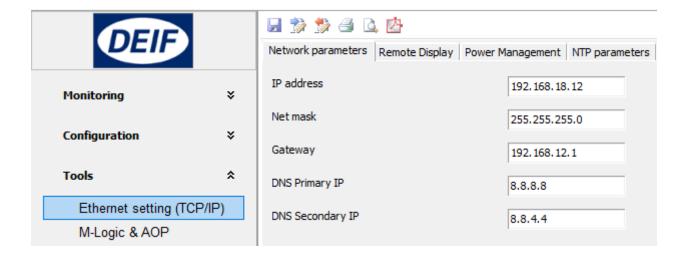

Punkt-zu-Punkt-Ethernet-Verbindung zur Steuerung

Wenn Sie zum Ändern der IP-Adresse nicht die Displayeinheit oder eine USB-Verbindung verwenden möchten, können Sie eine Punkt-zu-Punkt-Ethernet-Verbindung verwenden. Der PC muss eine statische IP-Adresse haben. Für die Standard-Netzwerkadresse der Steuerung muss die statische IP-Adresse des PCs 192.168.2.xxx lauten, wobei xxx eine freie IP-Adresse im Netzwerk ist (Hinweis: xxx kann nicht 2 (die IP-Adresse der Steuerung) oder 1 (das Gateway) sein).

Wenn Sie die Adresse der Steuerung ändern (z. B. von 192.168.**2**.yyy zu 192.168.**47**.yyy), wird die Verbindung unterbrochen. Es wird eine neue statische IP für den PC benötigt. In diesem Fall: 192.168.47.zzz, wobei zzz eine freie IP-Adresse im Netz ist. Die PC-Adresse, die IP-Adresse und das Gateway müssen sich im selben Subnetz befinden.

Wenn der PC die richtige statische IP-Adresse hat:

- 1. Verwenden Sie ein Ethernet-Kabel, um den PC mit der Steuerung zu verbinden.
- 2. Starten Sie die Utility-Software.
- 3. Wählen Sie TCP-IP, und geben Sie die IP-Adresse der Steuerung ein.



- 4. Mit der Schaltfläche Test können Sie überprüfen, ob die Verbindung erfolgreich ist.
- 5. Wählen Sie Verbinden, um eine Verbindung zur Steuerung über TCP-IP herzustellen.

Konfigurieren der IP-Adresse der Steuerung mit Hilfe der Utility-Software

- 1. Wählen Sie Verbinden, um eine Verbindung zur Steuerung über TCP-IP herzustellen.
- 2. Wählen Sie die Ethernet-Einstellung (TCP/IP).

Das Fenster Netzwerkparameter wird geöffnet:

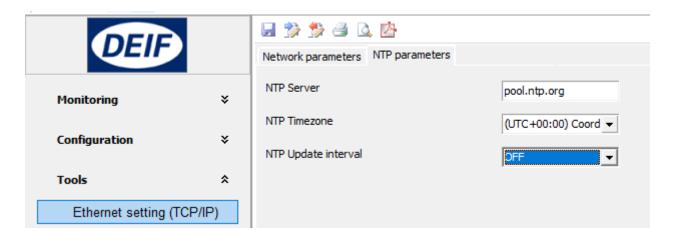
Wenn die Netzwerkparameter der Steuerung geändert wurden, drücken Sie die Schaltfläche In das Gerät schreiben 🦃 .

Die Steuerung empfängt die neuen Netzwerkparameter und führt einen Neustart der Netzwerkhardware durch.

Verwenden Sie die neue IP-Adresse der Steuerung (und eine korrekte statische IP-Adresse des PCs), um erneut eine Verbindung zur Steuerung herzustellen.

Verwendung eines Schalters

Bei einem System mit mehreren Steuerungen können alle Steuerungen an einen Schalter angeschlossen werden. Erstellen Sie eine eindeutige IP-Adresse für jede Steuerung im Netzwerk, bevor Sie die Steuerungen an einen Schalter anschließen.


Der PC kann dann an den Schalter angeschlossen werden, und das Ethernet-Kabel kann immer am selben Port des Schalters angeschlossen sein. Sie können die IP-Adresse der Steuerung in der Utility-Software eingeben.

Die TCP-IP-Verbindung ist schneller als andere Verbindungen. Außerdem kann der Benutzer im Anwendungsüberwachungsfenster der Utility-Software zwischen den Steuerungen wechseln.

2.3 Verwendung von NTP

Um sicherzustellen, dass die Steuerung immer die richtige Zeit hat, können Sie die Funktion des Netzwerkzeitprotokolls (NTP) verwenden.

Wählen Sie in der Utility-Software die Option *Ethernet-Einstellung (TCP/IP)* und dann das Tab*NTP-Parameter* im Fenster *Netzwerkparameter*.

Sie können einen NTP-Server, eine Zeitzone und ein Aktualisierungsintervall auswählen. Schreiben Sie die Änderungen in die Steuerung, um die NTP-Funktion zu aktivieren.

ANMERKUNG Der ausgewählte NTP-Server muss im Netzwerk verfügbar sein.

2.4 Schnittstelle zur Utility-Software

2.4.1 Obere Symbolleiste

- 1. Anschluss an eine Steuerung
- 2. Trennung von einer Steuerung
- 3. Benutzerberechtigungsstufe
- 4. Applikationseinstellungen
- 5. Konfiguriation der Netzwerkparameter.
- 6. Konfiguration von Modbus und Profibus
- 7. Upgrade-Optionen (erstellen Sie einen Optionscode und senden Sie ihn an support@deif.com).
- 8. Schreiben Sie neue Optionen (vom DEIF-Support erhalten).
- 9. Aktualisieren Sie die Firmware der Steuerung
- 10. Konfigurieren Sie die Anzeigeansichten.
- 11. Wird nicht für die Steuerung verwendet.
- 12. Konfigurieren Sie die Tasten und LEDs der AOP-2 (Additional Operator Panel zusätzliche Bedientafel).
- 13. Konfigurieren Sie die CIO-Module.
- 14. Lesen Sie die Zähler der Steuerung aus.
- 15. Informationen über die Steuerung und die Software.
- 16. Lesen, Schreiben, Sichern und Wiederherstellen des Geräts.
- 17. Datenverfolgung (zeigt das Maximum/Minimum eines Wertes an, solange das Datenverfolgungsfenster geöffnet ist).
- 18. Senden Sie Befehle an die Steuerung.

- 19. Synchronisation der Steuerung-Uhr mit dem angeschlossenen PC.
- 20. Informationen über die Utility-Software.
- 21. Konfiguration der Berechtigungen

2.4.2 Menü auf der linken Seite

Monitoring

⋄

Device

Application supervision

Alarms

Logs

Inputs/Outputs

Trending

Configuration

*

Application configuration

Parameters

Advanced Protection

ECU & D-AVR configuration

I/O & Hardware setup

External I/O (CIO)

Tools

*

Ethernet setting (TCP/IP)

M-Logic & AOP

Modbus Configurator

Option & Firmware

Translations

General Purpose PID

Permissions

Compare offline files

DEIF

• Link zu www.deif.com

Überwachung

- · Gerät:
 - Zeigt Informationen zur Bedienung der angeschlossenen Steuerung an.
- Anwendungsüberwachung
 - Zeigt den Betrieb der Anlage und die Stromerzeugung jedes Aggregats an

Alarme

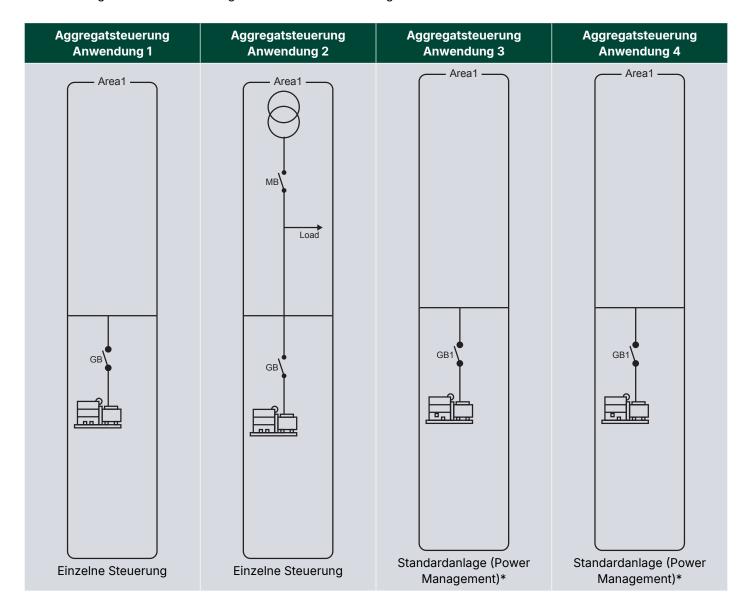
- Gibt einen Überblick über die aktiven Alarme.
- Zeigt den Verlauf der Alarme an, die aktiviert werden, während der PC angeschlossen ist.
- Protokolle
 - Zeigt die Alarme und Ereignisprotokolle der Steuerung an.
- Eingänge/Ausgänge
 - Der Eingangs- und Ausgangsstatus der Steuerung.
- Trending
 - · Zeigt den Echtzeitbetrieb an.
 - Trending ist möglich, wenn ein PC angeschlossen und das Trending-Fenster geöffnet ist. Die Steuerung kann die Daten nicht speichern.

Konfiguration

- Anwendungskonfiguration
 - Erstellung von Einlinien-Diagrammen für Anwendungen
- Parameter
 - Parameter konfigurieren und einsehen. Sie können die Parameter in einer Liste oder in einer Baumstruktur anzeigen.
- Erweiterte Schutzfunktionen
 - Erweiterte Schutzeinstellungen, wie z. B. Kapazitätskurven, P-Grad und mehr.
- ECU- & D-AVR-Konfiguration
 - Allgemeine MK-Konfiguration, wie beispielsweise Motorkommunikation und Start/Stopp MK.
 - ECU-Alarme
 - ECU-Wiederherstellung
 - Liste zur Nichtbeachtung von SPN
 - DSPR-Konfiguration
 - DAVR-Alarme
- E/A & Hardware-Setup
 - Ein- und Ausgänge konfigurieren.
- Externe E/A (CIO)
 - Externe Ein- und Ausgänge. erkennen und konfigurieren

Tools

- Ethernet-Einstellung (TCP/IP).
 - Ethernet-Einstellungen und Kommunikation. konfigurieren


- M-Logic & AOP
 - M-Logic und zusätzliche Bedienfelder konfigurieren.
 - Modbus-Konfigurator
 - Konfigurieren Sie die konfigurierbaren Modbus-Adressen.
- Option & Firmware
 - Siehe die verfügbaren Optionen.
- Übersetzungen
 - Passen Sie den Text in der Steuerung an oder übersetzen Sie ihn.
- Allzweck-PIDs
 - Einstellungen für Allzweck-PID konfigurieren.
- Berechtigungen
 - Benutzerrechte anzeigen und ändern
- Offline-Dateien vergleichen
 - Dateien vergleichen.

2.5 Einrichtung von Anwendungen

2.5.1 Anwendungen in der Steuerung

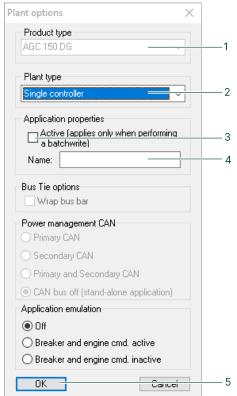
Anwendungstyp	Anlagentyp	Konfigurationsmerkmale	
Inselbetrieb	Einzelne Steuerung	In einer eigenständigen Anwendung kann die Steuerung nicht mit anderen Steuerungen kommunizieren. In einer eigenständigen Anwendung kann eine Aggregatsteuerung ein Aggregat, ein Gs und ein MB betreiben. Es dürfen keine anderen Aggregate oder Stromquellen vorhanden sein.	

Die Steuerung umfasst vier vorkonfigurierte Standardanwendungen.

ANMERKUNG * Nicht relevant bei AGC 150 für den Inselbetrieb.

Grundeinstellungen > Anwendungstyp > Eigenständig oder PM > Anwendungsauswahl

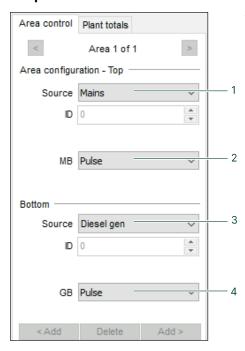
Parameter	Text	Bereich	Werkseinstellung
9161	Aktive Anwendung	1–4	-
9162	Gesehene Anwendung	1–4	-


Die Standardanwendungen können mit der Utility-Software geändert werden.

2.5.2 Einrichtung einer eigenständigen Anwendung

In einer eigenständigen Anwendung kann die Aggregatsteuerung ein Aggregat, einen Generatorschalter (Gs) und einen Netzschalter (Ns) steuern.

Bei Anschluss an eine Steuerung mit der Utility Software:


- 1. Wählen Sie Anwendungskonfiguration
- 2. Wählen Sie Neue Anlagenkonfiguration
- 3. Das Fenster Anlagenoptionen erscheint.

Wählen Sie die Anlagenoptionen:

- 1. Wählen Sie den Produkttyp (Steuerung)
 - Ausgegraut, wenn bereits eine Verbindung zu einer Steuerung besteht.
- 2. Wählen Sie den Anlagentyp: Einzelne Steuerung
- 3. Wählen Sie diese Option, um die Anwendung zu aktivieren, wenn sie in die Steuerung geschrieben wird.
- 4. Geben Sie einen Namen für die Anwendung ein.
- 5. Wählen Sie OK, um die Anwendung zu speichern.

Beispiel

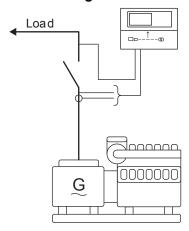
- 1. Wählen Sie eine dieser Arten von Stromquellen zur Anzeige im oberen Bereich aus:
 - Keine
 - Netz
 - Dieselaggregat
- 2. Wählen Sie den Schaltertyp für den Netzschalter:
 - Impuls
 - Dauersignal NE
 - Kompakt
 - Ext*
 - Keine
 - Continuous ND Dauersignal ND
- 3. Wählen Sie die Stromquelle aus, die im unteren Bereich angezeigt werden soll:
 - Keine
 - Netz
 - Dieselaggregat
- 4. Wählen Sie den Schaltertyp für den Generatorschalter:
 - Impuls
 - Dauersignal NE
 - Kompakt
 - Ext*
 - Keine

ANMERKUNG * Externer Schalter

Wenn die Erstellung der Anwendungszeichnung abgeschlossen ist, drücken Sie Anlagenkonfiguration ins Gerät schreiben , um die Konfiguration an die angeschlossene Steuerung zu senden.

Eigenständige Anwendung ohne Schalter

Wenn Sie eine eigenständige Anwendung ohne Generatorschalter erstellt haben, setzen Sie alle Gs-Rückmeldungen in der E/A-Setup-Liste zurück:

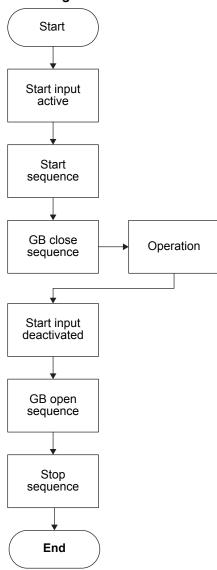

- 1. Wählen Sie in der Utility-Software die Option E/A-Setup
- 2. Ändern Sie die Funktion z. B. in Nicht verwendet für die entsprechenden E/A, z.B.:

3. Anwendungen

3.1 Inselbetrieb

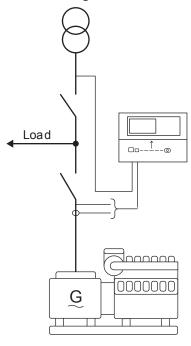
Einliniendiagramm

ANMERKUNG Bei Inselbetrieb darf der Digitaleingang Ns geschlossen nicht aktiviert werden.


Betriebsart AUTO

Über einen digitalen Befehl wird das Aggregat gestartet und der Generatorschalter geschlossen. Wenn der Stopp-Befehl gegeben wird, wird der Generatorschalter ausgelöst, und das Aggregat wird nach einer Abkühlphase gestoppt. Die Start-/ Stoppbefehle werden über das Ein- und Ausschalten eines Digitaleingangs oder über die zeitabhängigen Start-/ Stoppbefehle erteilt. Werden zeitabhängige Start-/Stopp-Befehle verwendet, so muss auch die Betriebsart AUTO verwendet werden. Die Display-Tasten können in der Betriebsart AUTO nicht verwendet werden.

Betriebsart SEMI-AUTO


Der Bediener kann mit den Display-Tasten das Aggregat starten, den Generatorschalter schließen, den Generatorschalter öffnen und das Aggregat stoppen.

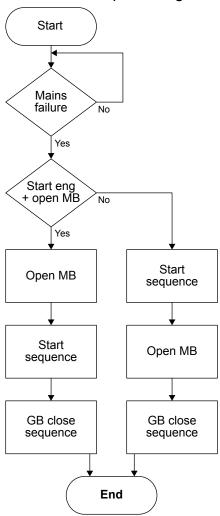
Flussdiagramm für den Inselbetrieb (Betriebsart AUTO)

3.2 Notstrombetrieb

Einliniendiagramm

Betriebsart AUTO

Die Steuerung startet automatisch das Aggregat und schaltet bei einem Netzausfall nach einer einstellbaren Verzögerungszeit auf Generatorversorgung um. Sie können die Steuerung auf diese Weise auf den Aggregatbetrieb umstellen:


- 1. Der Netzschalter wird beim Einschalten des Aggregats geöffnet.
- 2. Der Netzschalter bleibt geschlossen, bis das Aggregat läuft und die Spannung und Frequenz des Aggregats in Ordnung sind.

In beiden Fällen ist der Generatorschalter geschlossen, wenn Spannung und Frequenz des Generators in Ordnung sind, und der Netzschalter ist geöffnet.

Betriebsart SEMI-AUTO

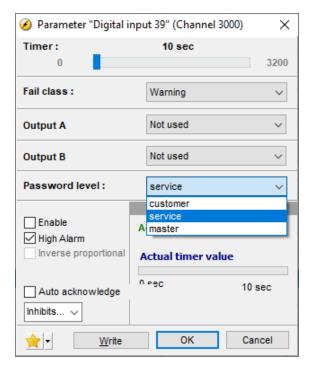
Wenn der Bediener den Motorstartknopf drückt, startet die Steuerung den Motor. Wenn der Bediener die Gs-Schließtaste betätigt, öffnet die Steuerung den Netzschalter und schließt den Generatorschalter.

Notstrombetrieb, Flussdiagramm

3.3 Auswählen der Aggregatbetriebsart

In Aggregatbetriebsart (Parameter 6070):

- Für Inselbetrieb: Wählen Sie Inselbetrieb
- Für Notstrombetrieb: Wählen Sie Auto. Notstrombetrieb


4. Grundfunktionen

4.1 Passwort

Die Steuerung verfügt über drei Passwortebenen, die an der Steuerung oder über die Utility-Software konfiguriert werden können. Parametereinstellungen können mit einem niederwertigen Passwort nicht geändert werden, werden aber auf dem Display angezeigt.

Passwortebene	Standard-Passwort	Kundenzugang	Servicezugang	Masterzugang
Customer	2000	•		
Service	2001	•	•	
Master	2002	•	•	•

Mit der Utility-Software ist es möglich, jeden Parameter mit einer bestimmten Passwortebene zu schützen. Geben Sie den Parameter ein und wählen Sie die richtige Passwortebene.

Die Passwortebene kann auch in der Parameteransicht in der Spalte Ebene geändert werden:

- 1. Klicken Sie mit der rechten Maustaste auf das entsprechende Feld in der Spalte "Zugriffsebene".
- 2. Wählen Sie Zugriffsebene ändern.
- 3. Wählen Sie die gewünschte Zugriffsebene
 - Customer
 - Service
 - Master

Sie können die Berechtigungen in der Utility-Software auf der Seite Tools > Berechtigungenanzeigen und bearbeiten.

4.2 AC-Messsysteme

Die Steuerung ist für die Messung von Spannungen in Systemen mit Nennspannungen zwischen 100 und 690 V AC ausgelegt. Das Wechselstromsystem kann dreiphasig, einphasig oder zweiphasig sein.

Siehe die Installationsanleitung für die Verkabelung der verschiedenen Systeme.

VORSICHT

Falsche Konfiguration ist gefährlich

Stellen Sie die richtige AC-Konfiguration ein. Wenden Sie sich im Zweifelsfall an den Schalttafelhersteller, um Informationen zu erhalten.

Grundeinstellungen > Messeinstellungen > Anschlussverdrahtung > AC-Konfiguration

Parameter	Text	Bereich	Werkseinstellung
9131	AC-Konfiguration	3-phasig 3W4 3-phasig 3W3 2-phasig L1/L3* 2-phasig L1/L2* 1-phasig L1*	3-phasig 3W4
9132	AC-Konfiguration Ss	3-phasig 3W4 3-phasig 3W3	3-phasig 3W4

ANMERKUNG

4.2.1 Dreiphasensystem

Das dreiphasige System ist die Standardeinstellung für die Steuerung. In diesem Fall müssen alle drei Phasen an die Steuerung angeschlossen werden.

Für die dreiphasige Messung ist die folgende Konfiguration erforderlich.

Grundeinstellungen > Nenneinstellungen > Spannung > Generator/Netz Nenneinstellung U

Parameter	Text	Bereich	Wertanpassung
6004	Generator/Netz Nennspannung	100 bis 25000 V	U _{NENN}

Grundeinstellungen > Messeinstellungen > Spannungswandler > Generator/Netz VT

Parameter	Text	Bereich	Wertanpassung
6041	U primär G	100 bis 25000 V	Primär VT
6042	U sekundär G	100 bis 690 V	Sekundär VT

Grundeinstellungen > Nenneinstellungen > Spannung > Sammelschienen-Nennwert U

Parameter	Text	Bereich	Wertanpassung
6053	Sammelschienenspannung	100 bis 25000 V	U _{NENN}

Grundeinstellungen > Messeinstelllungen > Spannungswandler > Sammelschiene Spannungswandler

Parameter	Text	Bereich	Wertanpassung
6051	U primär Ss	100 bis 25000 V	Primär VT
6052	U sekundär Ss	100 bis 690 V	Sekundär VT

^{*} Wenn diese Option gewählt wird, wird das gleiche System für die Sammelschiene verwendet und der Parameter 9132 ist deaktiviert.

ANMERKUNG Die Steuerung verfügt über zwei Sätze von Einstellungen für Sammelschienen-Transformatoren, die in diesem Messsystem individuell aktiviert werden können.

4.2.2 Zweiphasensystem

Das Zweiphasensystem ist eine spezielle Anwendung, bei der zwei Phasen und der Nullleiter an die Steuerung angeschlossen sind. Auf dem Display der AGC werden die Phasen L1 und L2/L3 angezeigt. Der Phasenwinkel zwischen L1 und L3 beträgt 180°. Die Zweiphasenmessung ist möglich zwischen L1-L2 oder L1-L3.

Die folgende Konfiguration ist für die Zweiphasenmessung erforderlich (Beispiel 240/120 V AC).

Grundeinstellungen > Nenneinstellungen > Spannung > Generator Nennwert U

Parameter	Text	Bereich	Wertanpassung
6004	Generator Nennwert U	100 bis 25000 V	120 V AC

Grundeinstellungen > Messeinstelllungen > Spannungswandler > Generator Spannungswandler

Parameter	Text	Bereich	Wertanpassung
6041	U primär G	100 bis 25000 V	U _{NENN}
6042	U sekundär G	100 bis 690 V	U _{NENN}

Grundeinstellungen > Nenneinstellungen > Spannung > Sammelschienen-Nennwert U

Parameter	Text	Bereich	Wertanpassung
6053	Sammelschienenspannung	100 bis 25000 V	U _{NENN}

Grundeinstellungen > Messeinstelllungen > Spannungswandler > Sammelschiene Spannungswandler

Parameter	Text	Bereich	Wertanpassung
6051	U primär Ss	100 bis 25000 V	U _{NENN}
6052	U sekundär Ss	100 bis 690 V	U _{NENN}

Die Messung U₁₃₁₁ ergibt 240 V AC. Die Sollwerte für den Spannungsalarm beziehen sich auf die Nennspannung 120 V AC. U_{L3L1} löst keinen Alarm aus.

Die Steuerung verfügt über zwei Sätze von Einstellungen für Sammelschienen-Transformatoren, die in ANMERKUNG diesem Messsystem individuell aktiviert werden können.

4.2.3 Einphasensystem

Das Einphasensystem besteht aus einer Phase und dem Neutralleiter.

Die folgende Konfiguration ist für die einphasige Messung erforderlich (Beispiel 230 V AC).

Grundeinstellungen > Nenneinstellungen > Spannung > Generator Nennwert U

Parameter	Text	Bereich	Wertanpassung
6004	Generatorspannung	100 bis 25000 V	230 V AC

Grundeinstellungen > Messeinstelllungen > Spannungswandler > Generator Spannungswandler

Parameter	Text	Bereich	Wertanpassung
6041	U primär G	100 bis 25000 V	U _{NENN} × √3
6042	U sekundär G	100 bis 690 V	U _{NENN} × √3

Grundeinstellungen > Nenneinstellungen > Spannung > Sammelschienen-Nennwert U

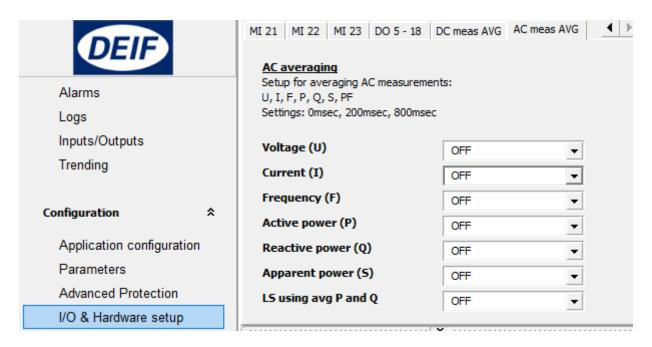
Parameter	Text	Bereich	Wertanpassung
6053	Sammelschienenspannung	100 bis 25000 V	U _{NENN} × √3

Grundeinstellungen > Messeinstelllungen > Spannungswandler > Sammelschiene Spannungswandler

Parameter	Text	Bereich	Wertanpassung
6051	U primär Ss	100 bis 25000 V	U _{NENN} × √3
6052	U sekundär Ss	100 bis 690 V	U _{NENN} × √3

ANMER KUNG

Die Spannungsalarme beziehen sich auf U_{NENN} } (z. B. 230 V AC).

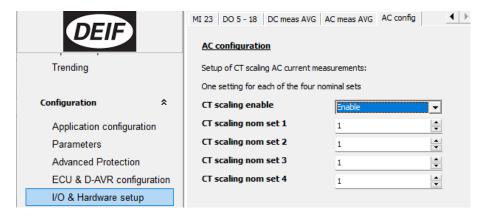

Die Steuerung verfügt über zwei Sätze von Einstellungen für Sammelschienen-Transformatoren, die in diesem Messsystem individuell aktiviert werden können.

4.2.4 Mittelwertbildung bei AC-Messungen

Mit der Utility-Software können Sie eine Mittelwertbildung für eine Reihe von AC-Messungen einrichten. Die gemittelten Werte werden dann auf der Displayeinheit und in den Modbus-Werten angezeigt. Die Steuerung arbeitet jedoch weiterhin mit Echtzeitmessungen.

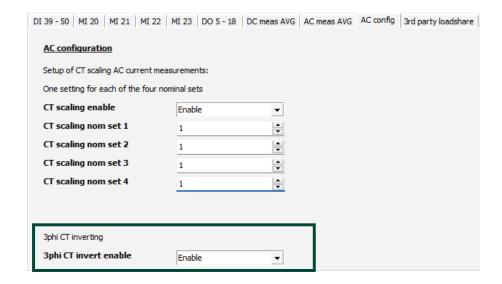
Wählen Sie in der Utility-Software unter *E/A & Hardware-Setup* das Tab *AC-Mittelwert*. Für jede Messung können Sie zwischen keiner Mittelwertbildung (0 ms), Mittelwertbildung über 200 ms oder Mittelwertbildung über 800 ms wählen.

Auf dem Tab AC-Mittelwert können Sie auch die Mittelwertbildung für die Lastverteilung anhand der Messungen von Wirkleistung (P) und Blindleistung (Q) einrichten. Setzen Sie LS mit Mittelwert P und Q auf EIN, und wählen Sie 200 ms oder 800 ms für die Messung der Wirkleistung (P) und der Blindleistung (Q).



4.2.5 AC-Konfiguration

Stromwandlerskalierung


Mit der Utility-Software können Sie eine Stromwandlerskalierung für die Messung von AC-Strömen einrichten. Es besteht die Möglichkeit, für jede der vier Nenneinstellungssätze die entsprechende Skalierung auszuwählen. Diese Funktion empfiehlt sich insbesondere für Stromwandler mit mehr als einer Konfiguration.

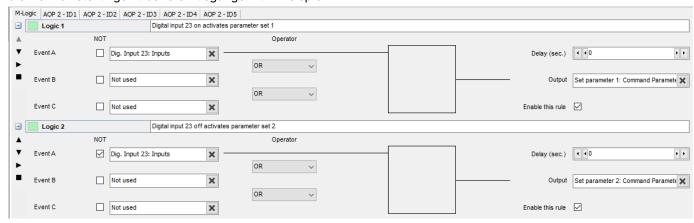
Wählen Sie in der Utility-Software unter *E/A & Hardware-Setup* das Tab *AC-Konfiguration* aus. Um die Skalierungsfunktion für den Stromwandler zu aktivieren, muss *Stromwandlerskalierung aktivieren* auf *Aktivieren* eingestellt werden. Der Bereich für die einzelnen Sätze liegt bei 0,5 bis 2,5.

Invertierung dreiphasiger Stromwandler

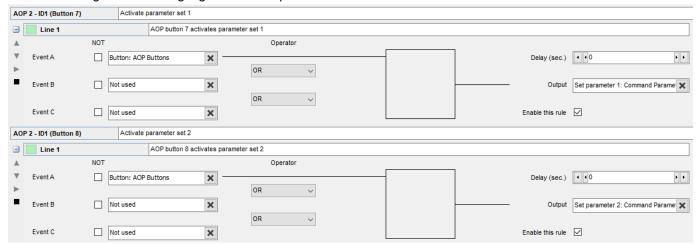
Mit Hilfe der Utility-Software haben Sie die Möglichkeit, dreiphasige Stromwandler zu invertieren. Dabei können nur alle drei Phasen invertiert werden; das Invertieren einzelner Phasen ist nicht möglich. Um die Stromwandler zu invertieren, gehen Sie auf *E/A & Hardware-Setup* und wählen Sie das Tab *AC-Konfiguration* an. Zum Invertieren dieser Funktion wählen Sie im Dropdown-Menü neben **Invertierung dreiphasiger Stromwandler aktivieren** die Option *Aktivieren* aus.

4.3 Nenneinstellungen

Die Steuerung hat vier Sätze von Nenneinstellungen für den Generator und zwei Sätze für die Sammelschiene. Die vier Sätze von Nenneinstellungen für den Generator können individuell konfiguriert werden.


Alternative Konfiguration > Nenneinstellungen des Generators

Parameter	Text	Bereich	Werkseinstellung
6006	Akt. Nennwerte	Nenneinstellung [1 bis 4]	Nenneinstellung 1


Umschalten zwischen den Nennwerten

Sie können wie folgt zwischen den vier Sätzen von Nenneinstellungen wechseln:

 Digitaleingang: Die M-Logic wird verwendet, wenn ein Digitaleingang für das Umschalten zwischen den vier Nenneinstellungsgruppen erforderlich ist. Bestimmen Sie den erforderlichen Eingang über die Eingangsereignisse und die Nenneinstellungen über die Ausgänge. Zum Beispiel:

2. **AOP**: Die M-Logic wird verwendet, wenn die AOP zum Umschalten zwischen den vier Nenneinstellungsgruppen erforderlich ist. Wählen Sie die gewünschte AOP-Taste unter den Eingangsereignissen aus und wählen Sie die Nenneinstellungen in den Ausgängen. Zum Beispiel:

3. Menüeinstellungen: An der Steuerung oder in der Utility-Software.

Nennwertänderung blockieren

Verwenden Sie die Funktion *Block Nenn. Änd.*, um die Änderung der Nennwerte für den Generator und die Sammelschiene zu verhindern. Gehen Sie zu Parameter *6017* und setzen Sie den Sollwert auf *EIN*, um die Funktion zu aktivieren.

4.3.1 Standard-Nenneinstellungen

Die Standard-Nenneinstellungen sind die Einstellungen 1.

Grundeinstellungen > Nenneinstellungen

Parameter	Text	Bereich	Werkseinstellung
6001	Frequenz Nennwert f	48,0 bis 62,0 Hz	50 Hz
6002	Leistung Nennwert P	10 bis 20000 kW	480 kW
6003	Strom Nennwert I	0 bis 9000 A	867 A
6004	Generator Nennwert U	100 bis 25000 V	400 V
6005	Grenzwert Nennwert U/min	100 bis 4000 U/min	1500 U/min.
6007	4. Strom Nennwert I	0 bis 9000 A	867 A

Parameter	Text	Bereich	Werkseinstellung
6053	Sammelschiene Nennwert U	100 bis 25000 V	400 V
6055	4. Strom Nennwert P	10 bis 9000 kW	480 kW

4.3.2 Alternative Nenneinstellungen

Alternative Konfiguration > Nenneinstellungen des Generators > Nenneinstellungen [2 bis 4] > Grundeinstellungen

Parameter	Text	Bereich	Werkseinstellung
6011, 6021 oder 6031	Frequenz Nennwert f	48,0 bis 62,0 Hz	50 Hz
6012, 6022 oder 6032	Leistung Nennwert P	10 bis 20000 kW	480 kW
6013, 6023 oder 6033	Strom Nennwert I	0 bis 9000 A	867 A
6014, 6024 oder 6034	Generator Nennwert U	100 bis 25000 V	400 V
6015, 6025 oder 6035	Grenzwert Nennwert U/min	100 bis 4000 U/min	1500 U/min.
6017, 6027 oder 6037	4. Strom Nennwert I	0 bis 9000 A	867 A

Sammelschiene Nenneinstellungen 2

Die Steuerung verfügt über zwei Sätze von Nenneinstellungen für die Sammelschiene. Jeder Satz besteht aus einem nominellen sowie einem primären und sekundären Spannungswert. "U primär" und "U sekundär" werden zur Definition der primären und sekundären Spannungswerte verwendet, falls Messwandler installiert sind.

Alternative Konfiguration > Nenneinstellungen für die Sammelschiene > Nenneinstellungen Auswahl

Parameter	Text	Bereich	Werkseinstellung
6054	Nenneinstellungen Auswahl	Nenneinstellung 1 Nenneinstellung 2 Ss Unenn = G Unenn	Nenneinstellung 1

Wenn kein Spannungswandler zwischen Generator und Sammelschiene installiert ist, wählen Sie Ss $U_{NENN} = G U_{NENN}$. Wenn diese Funktion aktiviert ist, findet keiner der Ss-Nenneinstellungen Beachtung. Stattdessen wird die Ss-Nennspannung gleichrangig mit der Generator-Nennspannung betrachtet.

Alternative Konfiguration > Nenneinstellungen für die Sammelschiene > Nenneinstellungen 2

Parameter	Text	Bereich	Werkseinstellung
6061	Sammelschiene primär U	100 bis 25000 V	400 V
6062	Sammelschiene sekundär U	100 bis 690 V	400 V
6063	Sammelschiene Nenn. U	100 bis 25000 V	400 V
6064	4. Str.w. Leistung	10 bis 9000 kW	230 kW

4.3.3 Skalierung

Bei Anwendungen über 25000 V und unter 100 V muss der Eingangsbereich an den tatsächlichen Wert des primären Spannungswandlers angepasst werden.

Eine Änderung der Spannungsskalierung wirkt sich auch auf die Nennleistungsskalierung aus.

Grundeinstellungen > Messeinstelllungen > Skalierung

Parameter	Text	Bereich	Werkseinstellung	Anmerkungen
9031	Skalierung	10 bis 2500 V 100 bis 25000 V 10 bis 160000 V 0,4 bis 75000 V	100 bis 25000 V	10 bis 2500 V: Dies wird für Generatoren bis zu 150 kVA empfohlen. Die Nennleistung muss weniger als 900 kW betragen. 100 bis 25000 V: Dies wird für Generatoren über 150 kVA empfohlen.

HINWEIS

Falsche Konfiguration ist gefährlich

Alle Nennwerte und die primären Spannungswandler-Einstellungen müssen korrigiert werden, nachdem die Skalierung (Parameter 9030) geändert worden ist.

4.4 Übersicht über Betriebsarten

Die Steuerung verfügt über vier reguläre Betriebsarten und eine Blockierungsfunktion.

- AUTO: Die Steuerung arbeitet automatisch, und der Bediener kann keine Sequenzen manuell einleiten.
- **SEMI-AUTO**: Alle Abläufe müssen vom Bediener initiiert werden. Dies kann über die Tasten, Modbus-Befehle oder Digitaleingänge erfolgen. Nach dem Start läuft das Aggregat mit Nennwerten.
- TEST: Die Testsequenz beginnt.
- **MANUELL**: Die Digitaleingänge zum Erhöhen/Verringern können verwendet werden (wenn sie konfiguriert wurden), ebenso wie die Tasten *Start* und *Stopp*. Beim Start läuft das Aggregat ohne Nachregelung an.
- **BLOCKIEREN**: Die Steuerung kann keine Sequenzen, z. B. die Startsequenz, einleiten. Die Betriebsart BLOCKIEREN dient der bewussten Stillsetzung der Anlage und muss bei Wartungs- und Reparaturarbeiten aktiviert werden.

HINWEIS

Plötzliches Stoppen des Aggregats

Wird bei laufendem Aggregat die Betriebsart BLOCKIEREN gewählt, schaltet sich das Aggregat ab.

4.4.1 Betriebsart SEMI-AUTO

Die Steuerung kann in der Betriebsart SEMI-AUTO verwendet werden. Das bedeutet, dass die Steuerung keine Sequenzen automatisch einleitet, wie es im AUTO-Betrieb der Fall ist. Sequenzen werden nur dann ausgeführt, wenn entsprechende Befehle gegeben wurden.

Ein externes Signal kann ausgelöst werden durch:

- 1. Displaytasten
- 2. Verwendung von Digitaleingängen
- 3. Modbus-Steuerbefehle

ANMERKUNG

Die Steuerung verfügt über eine begrenzte Anzahl von Digitaleingängen. Siehe **Digitaleingänge** für die Verfügbarkeit.

Befehle im SEMI-AUTO-Betrieb

Befehl	Beschreibung
Start	Die Startsequenz wird eingeleitet und dauert an, bis das Aggregat startet oder die maximale Anzahl von Startversuchen erreicht ist.
Stopp	Das Aggregat wird abgestellt. Ohne das Signal "Motor läuft" ist die Stoppsequenz im Zeitraum der erweiterten Stoppzeit weiterhin aktiv. Das Aggregat wird mit Nachlaufzeit gestoppt. Wird die Taste <i>Stopp</i> zwei Mal betätigt, wird die Nachlaufphase beendet.
GS schließen	Die Steuerung schließt den Generatorschalter, wenn der Netzschalter geöffnet ist.
GS öffnen	Die Steuerung öffnet den Gs sofort.
NS schließen	Die Steuerung schließt den Netzschalter, wenn der Gemeratorschalter geöffnet ist.
NS öffnen	Die Steuerung öffnet den NS sofort.

4.4.2 Betriebsart TEST

Die Testfunktion wird aktiviert, indem man auf dem Display über die Taste *Schnellzugriff* "Test" auswählt oder einen digitalen Eingang aktiviert.

Leistungssollwerte > Test

Parameter	Text	Bereich	Werkseinstellung
7041	Sollwert	1 bis 100	1
7042	Timer	0,0 bis 999,0 min	0,0 min
7043	Rücklaufmodus	SEMI-AUTOAUTOManuellKein Wechsel der Betriebsart	Keine Änderung
7044	Тур	Leerlauftest Volltest	Leerlauftest

ANMER KUNG

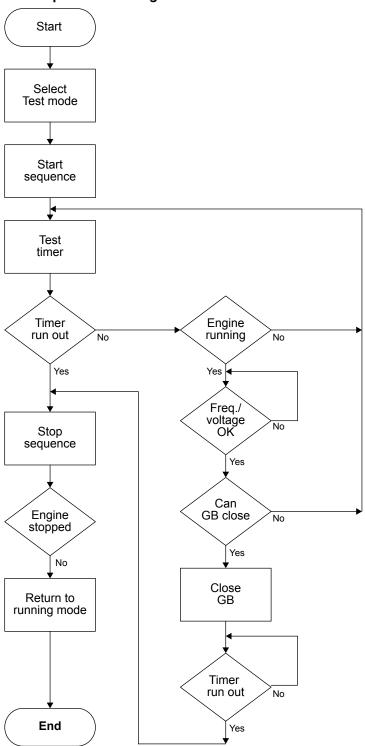
Wenn der Timer auf 0,0 Minuten eingestellt ist, wird ein Endlostest durchgeführt.

Befindet sich die Aggregatsteuerung in der Betriebsart TEST in der Stoppsequenz und wird die Betriebsart auf SEMI-AUTO umgeschaltet, läuft das Aggregat weiter.

Die Betriebsart TEST im Inselbetrieb (Aggregatmodus auf Inselbetrieb eingestellt) kann nur den einfachen und den vollständigen Test ausführen.

Leerlauftest

Im Leerlauftest wird das Aggregat nur gestartet und bei Nennfrequenz mit offenem GS betrieben. Der Test wird ausgeführt, bis der Timer abgelaufen ist.


Lastprobe

Dies ist nicht bei eigenständigen Anwendungen möglich.

Volltest

Der vollständige Test startet das Aggregat und lässt es mit Nennfrequenz laufen. Wenn möglich, wird der Generatorschalter geschlossen. Wenn der Test-Timer abläuft, wird der Generatorschalter geöffnet und der Generator wird gestoppt.

Testsequenz-Flussdiagramm

4.4.3 Betriebsart MANUELL

In Betriebsart 'Manuell' kann das Aggregat über Digitaleingänge gesteuert werden.

Betriebsart Manuell, Befehle

Befehl	Beschreibung
Start	Die Startsequenz wird eingeleitet und dauert an, bis das Aggregat startet oder die maximale Anzahl von Startversuchen erreicht ist. Anmerkung: Es gibt keine automatische Regelung.
Stopp	Das Aggregat wird abgestellt. Ohne das Motor-läuft-Signal bleibt die Stoppsequenz in der verlängerten Stoppzeitspanne aktiv. Das Aggregat wird mit Nachlaufzeit gestoppt.

Befehl	Beschreibung
GS schließen	Wenn keine Spannung auf der Sammelschiene anliegt, schließt die Steuerung den Generatorschalter (Gs).
	Wenn auf der Sammelschiene Spannung anliegt, kann der Bediener den Gs nicht schließen.
GS öffnen	Die Steuerung öffnet den Gs sofort.
NS schließen	Liegt keine Spannung auf der Sammelschiene an, schließt die Steuerung den Netzschalter (Ns).
	Wenn auf der Sammelschiene Spannung anliegt, kann der Bediener den Ns nicht schließen.
NS öffnen	Die Steuerung öffnet den NS sofort.

4.4.4 Betriebsart BLOCKIEREN

Wenn die Betriebsart BLOCKIEREN ausgewählt ist, ist die Steuerung für bestimmte Aktionen gesperrt. Das bedeutet, dass die Steuerung das Aggregat nicht starten und keine Schalthandlungen durchführen kann.

Um Einstellungsänderungen während des laufenden Betriebs über das Display vornehmen zu können, muss ein Passwort eingegeben werden. Es ist nicht möglich, die Betriebsart BLOCKIEREN bei Rückmeldung "Motor läuft" anzuwählen.

Wenn die Digitaleingänge zur Änderung der Betriebsart verwendet werden, ist es wichtig, dass der auf die Betriebsart BLOCKIEREN konfigurierte Eingang ein Dauersignal ist:

- Wenn das Signal EIN ist, ist die Steuerung blockiert.
- Wenn das Signal AUS ist, kehrt die Steuerung in die Betriebsart zurück, die vor der Betriebsart BLOCKIEREN ausgewählt wurde.

Wird nach Aktivierung des digitalen Blockierungseingangs über das Display die Betriebsart BLOCKIEREN gewählt, bleibt die Steuerung nach Deaktivierung des Blockierungseingangs in der Betriebsart BLOCKIEREN. Änderungen der Betriebsart sind nur noch über das Display möglich. Die Betriebsart kann nur über Display oder Digitaleingang geändert werden. Alarme werden durch diese Betriebsart nicht beeinflusst.

ANMERKUNG

Das Aggregat schaltet sich ab, wenn die Betriebsart BLOCKIEREN gewählt wird, während das Aggregat

VORSICHT

Vorsicht beim Starten des Aggregats

Bevor die Betriebsart gewechselt wird, ist zu prüfen, ob sich keine Personen in der Nähe des Aggregats aufhalten und ob das Aggregat betriebsbereit ist. Starten Sie das Aggregat nach Möglichkeit von der lokalen Motorkontrolltafel aus (falls installiert), anstatt das Aggregat vor Ort anzulassen und zu starten.

4.4.5 Nicht in AUTO

Diese Funktion löst einen Alarm aus, wenn sich das System nicht in der Betriebsart AUTO befindet.

Funktionen > Nicht in AUTO

Parameter	Text	Bereich	Werkseinstellung
6541	Timer	10,0 bis 900,0 s	300,0 s
6544	Aktivieren	AUS EIN	AUS
6545	Fehlerklasse	Fehlerklassen	Warnung

4.5 Schalter

4.5.1 Schaltertypen

Es gibt fünf Einstellungen für den Schaltertyp. Stellen Sie den Schaltertyp mit der Utility-Software unter Anwendungskonfiguration ein.

Zusätzliche Informationen

Siehe Utility Software für die Einrichtung von Anwendungen.

Dauer-NE und Dauer-ND

Dauer-NE ist ein Signal für Ruhestrom, und Dauer-ND ist ein Signal für Arbeitsstrom. Diese Einstellungen werden normalerweise in Kombination mit einem Schütz verwendet.

Die Steuerung verwendet nur den Ausgang Schalter schließen:

- · Geschlossen: Dadurch wird das Schütz geschlossen.
- · Offen: Dadurch wird das Schütz geöffnet.

Der Ausgang Schalter öffnen kann für eine andere Funktion konfiguriert werden.

Impuls

Diese Einstellung wird normalerweise in Kombination mit einem Schutzschalter verwendet. Die Steuerung verwendet diese Ausgänge:

- Zum Schließen des Leistungsschalters wird der Ausgang Schalter schließen aktiviert (bis eine Rückmeldung zum Schließen des Leistungsschalters vorliegt).
- Zum Öffnen des Leistungsschalters wird der Ausgang *Schalter öffnen* aktiviert (bis eine Rückmeldung zum Öffnen des Leistungsschalters vorliegt).

Extern / ATS - keine Steuerung

Diese Einstellung wird verwendet, um die Position des Schalters anzuzeigen, aber der Schalter wird nicht von der Steuerung gelenkt.

Kompakt

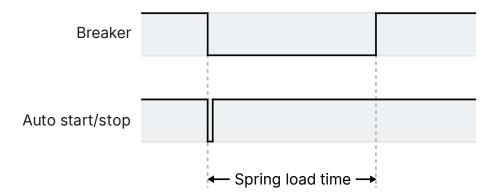
Diese Einstellung wird in der Regel in Kombination mit einem direkt gesteuerten Motorschutzschalter verwendet. Die Steuerung verwendet diese Ausgänge:

- Der Ausgang Schalter schließen schließt kurz, um den Kompaktschalter zu schließen.
- Der Ausgang Schalter öffnen schließt, um den Kompaktschalter zu öffnen. Der Ausgang bleibt lange genug geschlossen, um den Schalter wieder aufzuladen.

Wird der Kompaktschalter extern geschaltet, wird er vor dem nächsten Schließen automatisch gespannt.

4.5.2 Federspannzeit

Um Fehler beim Schließen von Schaltern zu vermeiden, die durch nicht gespannte Speicherfedern verursacht werden, kann die Federspannzeit angepasst werden.


Prinzip

Ein Schließfehler könnte in folgenden Situationen auftreten:

- 1. Ein Aggregat befindet sich in der Betriebsart AUTO, der Auto-Start/Stopp-Eingang ist aktiv, das Aggregat läuft, und der Gs ist geschlossen.
- 2. Der Auto-Start/Stopp-Eingang wird deaktiviert, die Stoppsequenz wird ausgeführt und der Gs wird geöffnet.

3. Wenn der Auto-Start/Stopp-Eingang erneut aktiviert wird, bevor die Stoppsequenz beendet ist, löst die Steuerung einen Fehler beim Schließen des Gs aus, da der Gs Zeit benötigt, um die Feder zu laden, bevor er zum Schließen bereit ist.

Das Diagramm zeigt ein Beispiel, bei dem ein einzelnes Aggregat im Inselbetrieb über den Auto Start/Stopp-Eingang gesteuert wird.

- Wenn der Eingang Auto-Start/Stopp deaktiviert wird, öffnet sich der Gs.
- Die Auto-Start/Stopp-Funktion wird sofort nach dem Öffnen des Gs wieder aktiviert, z. B. durch den Bediener über einen Schalter in der Schalttafel.
- Die Steuerung wartet eine Weile, bevor sie das Schließsignal erneut sendet, da die Federspannzeit ablaufen muss.

Sicherstellung der Zeit zum Nachspannen

Wenn der Schalter nach dem Öffnen Zeit zum Nachspannen der Feder benötigt, kann die Steuerung diese Verzögerung berücksichtigen. Dies kann je nach Schaltertyp über Timer in der Steuerung oder über digitale Rückmeldungen des Schalters gesteuert werden:

- Zeitgesteuert. Ein Lastzeit-Sollwert für die Gs- und Ns-Regelung von Leistungsschaltern ohne Rückmeldung, dass die Feder gespannt ist. Nachdem der Schalter geöffnet wurde, kann er erst nach Ablauf der Verzögerungszeit wieder geschlossen werden. Wenn der Timer läuft, wird die verbleibende Zeit auf dem Display angezeigt.
- Digitaleingang. Zwei konfigurierbare Eingänge werden für Rückmeldungen von den Schaltern verwendet: Jeweils einer wird für die 'Feder-gespannt'- Rückmeldung von GS und NS verwendet. Nachdem der Schalter geöffnet wurde, kann er nicht schließen, bevor die konfigurierten Eingänge aktiv sind.

Wenn sowohl ein Timer als auch eine Rückmeldung des Schalters verwendet werden, müssen beide Anforderungen erfüllt sein, bevor der Schalter schließen darf.

4.5.3 Schalterpositionsfehler

Der Alarm "Schalterpositionsfehler" wird aktiviert, wenn eine Steuerung keine Rückmeldung der Schalterstellung hat oder wenn beide Rückmeldungen vom Schalter den Zustand "hoch" aufweisen.

Wenn eine Steuerung einen Schalterpositionsfehler hat, informiert sie die anderen Steuerungen in der Anwendung. Das System sperrt dann den Abschnitt mit dem Schalterpositionsfehler. Abschnitte, die von dem Schalterpositionsfehler nicht betroffen sind, können weiter betrieben werden.

Sie können eine Fehlerklasse zuweisen, um zu versuchen, den fehlerhaften Schalter auszulösen, wenn die Steuerung einen Schalterpositionsfehler feststellt.

4.6 Alarme

4.6.1 Fehlerklassen

Alle aktivierten Alarme müssen eine Fehlerklasse haben. Die Fehlerklasse bestimmt die Auswirkung des Alarms auf die Funktion der Anlage.

Die Fehlerklasse kann für jede Alarmfunktion ausgewählt werden, entweder über die Steuerung oder über die Utility-Software.

Um die Fehlerklasse mit Hilfe der Utility-Software zu ändern, öffnen Sie den Alarm in der Parameterliste und wählen dann die Fehlerklasse aus der Liste aus.

Fehlerklasse/Aktion	Hupe	Alarmanzeig e	Gs- Auslösung	Ns- Auslösung	Kühlnachlauf	Aggregat stoppen
Blockieren	•	•				
Warnung	•	•				
Gs-Auslösung	•	•	•			
Auslösung + Stopp	•	•	•		•	•
Abstellung	•	•	•			•
Ns-Auslösung	•	•		•		
Sicherheitsstopp	•	•			•	•
Auslösung NS/GS	•	•	(●)	•		
Kontrollierter Stopp	•	•	•		•	•

Die Tabelle zeigt die Aktionen der einzelnen Fehlerklassen. Wenn zum Beispiel ein Alarm mit der Fehlerklasse Abstellung konfiguriert ist, geschieht Folgendes:

- · Die Hupe wird aktiviert.
- · Der Alarm wird auf dem Bildschirm mit den Alarminformationen angezeigt.
- · Der Generatorschalter öffnet sofort.
- Das Aggregat wird sofort stillgesetzt
- Das Aggregat kann nicht von der Steuerung aus gestartet werden (siehe nächste Tabelle)

Bei eigenständigen Anwendungen hat Sicherheitsstopp keine Wirkung.

Ns/Gs-Auslösung löst den Generatorschalter nur aus, wenn die Aggregatsteuerung einen Netzschalter kontrolliert. Das bedeutet, dass eine Aggregatsteuerung nur in einer eigenständigen Anwendung, die einen Netzschalter enthält, einen Netzschalter auslösen kann. Andernfalls löst die Fehlerklasse immer den Generatorschalter aus.

Wenn der Motor abgestellt ist

Fehlerklasse/Aktion	Start blockiert	NS-Sequenz blockiert	GS-Sequenz blockiert
Blockieren	•		•
Warnung			
Gs-Auslösung	•		•
Auslösung + Stopp	•		•
Abstellung	•		•
Ns-Auslösung		•	
Ns/Gs-Auslösung*	•	•	(●)
Kontrollierter Stopp	•		•

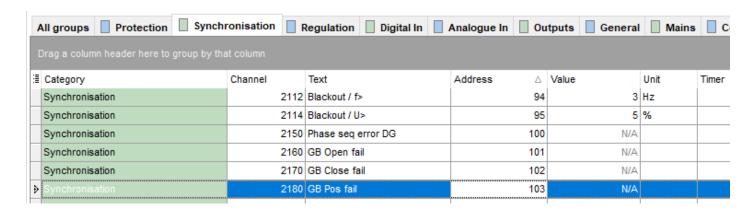
ANMERKUNG

*Die Fehlerklasse Ns/Gs-Auslösung blockiert nicht die Sequenzen Start und Gs-Blockierung, wenn sich die Aggregatsteuerung in einer eigenständigen Anwendung mit einem Netzschalter befindet.

Unterdrückungsfunktionen 4.6.2

Sie können die Utility-Software verwenden, um Unterdrückungsfunktionen für jeden Alarm zu konfigurieren. Öffnen Sie den Alarm in der Parameterliste und wählen Sie dann die Unterdrückungsfunktione(n) aus der Liste aus.

Es können nur Alarme unterdrückt werden. Funktionseingänge wie "Motor-läuft", "Fernstart" oder "Zugriffssperre" werden nicht unterdrückt.


Funktion	Anmerkungen	
Unterdrückung 1		
Unterdrückung 2	M-Logic-Ausgänge: Bedingungen werden in M-Logic programmiert.	
Unterdrückung 3		
GS EIN	Der Generatorschalter ist geschlossen.	
Gs Aus	Der Generatorschalter ist offen.	
Status "Motor läuft"	Signal "Motor läuft" erkannt, Timer abgelaufen*.	
Status "Motor läuft nicht"	Kein Signal "Motor läuft" erkannt, Timer nicht abgelaufen.	
Generatorspannung > 30 %	Generatorspannung liegt 30 % über der Nennspannung.	
Generatorspannung < 30 %	Generatorspannung liegt 30 % unter der Nennspannung.	
NS EIN	Netzschalter ist geschlossen.	
NS AUS	Netzschalter ist geöffnet.	
Abstellüberbrückung	Der Eingang für die Abschaltüberbrückung wird aktiviert.	

ANMERKUNG * Der Timer für den Laufstatus wird unter Funktionen > Laufstatus > Timer konfiguriert. Der Timer wird bei binärer Rückmeldung "Motor läuft" ignoriert.

Alarmlistenüberwachung 4.6.3

Die Alarmlistenüberwachung ermöglicht es Ihnen, über Modbus alle aktiven Alarme aufzurufen. Hierbei handelt es sich um eine nützliche Funktion für die Fernüberwachung und Touchscreengeräte, wie etwa AGI- und SCADA/BMS-Systeme. Die Alarme liegen in den Modbus-Adressen 28000 bis 28099 und sind nicht im Eingaberegister (04) aufgeführt.

Die Modbus-Adresse für einen aktiven Alarm entspricht dem Adressenwert in der Utility-Software. So steht die Modbus-Adresse 103 beispielsweise für den Parameter 2180, "GS-Positionsfehler", da die Adresse für diesen Parameter in der Utility 103 ist.

4.7 M-Logic

Der Hauptzweck von M-Logic besteht darin, dem Betreiber/Konstrukteur mehr Flexibilität zu geben.

Mit M-Logic werden unterschiedliche Befehle zu vordefinierten Bedingungen ausgeführt. M-Logic ist keine SPS, kann aber eine solche ersetzen, wenn nur recht einfache Befehle ausgeführt werden sollen.

M-Logic ist ein einfaches Werkzeug, das auf logischen Ereignissen basiert. Eine oder mehrere Eingangsbedingungen werden definiert, bei Aktivierung dieser Eingangsbedingungen wird die definierte Ausgangshandlung ausgeführt. Es kann eine Vielzahl von Eingängen ausgewählt werden, wie digitale Eingänge, Alarmbedingungen und Betriebsarten. Es kann auch eine Vielzahl von Ausgängen gewählt werden, wie z. B. Relaisausgänge, Wechsel der Betriebsarten.

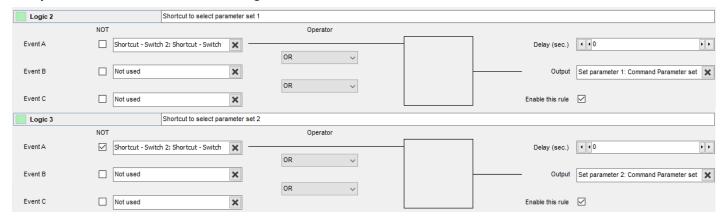
Sie können M-Logic in der Utility-Software konfigurieren.

4.7.1 Allgemeine Schnellzugriffe


Sie können Ihre eigenen Schnellzugriffe mit M-Logic in der Utility-Software konfigurieren. Sie können die konfigurierten Schnellzugriffe einsehen, indem Sie die Taste Schnellzugriff drücken und Allgemeine Schnellzugriffe auswählen. Wenn Sie keinen Schnellzugriff konfiguriert haben, ist das Menü Allgemeine Schnellzugriffe leer.

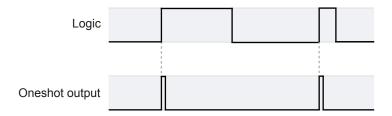
Bei einem Impuls-Schnellzugriff wird der Befehl jedes Mal gesendet, wenn Sie den Schnellzugriff auswählen und im Display-Menü auf OK drücken.

Für einen Schalter-Schnellzugriff wird der Schalter jedes Mal umgeschaltet (ein/aus), wenn Sie den Schnellzugriff auswählen.

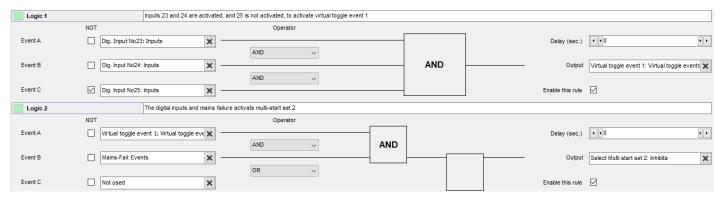

Benutzen Sie die Schnittstelle Übersetzungen, um den Schnellzugriff umzubenennen.

Beispiel für einen Impuls-Schnellzugriff

SC Impuls 1 in Hupe zurücksetzen umbenennen.


Beispiel für einen Schalter-Schnellzugriff

SC Schalter 2 ein in Parametersatz 1 benutzen umbenennen. SC Schalter 2 aus in Parametersatz 2 benutzen umbenennen.


4.7.2 Oneshots

Beschreibung	Anmerkungen		
Oneshot-Satz [1–16]	Der Oneshot wird für eine kurze Zeit (etwa 100 ms) aktiviert, wenn die Logik stimmt. Solange die Logik stimmt, wird der Oneshot nicht erneut aktiviert. Wenn die Logik nicht stimmt, wird die Funktion zurückgesetzt.		

4.7.3 Virtuelle Umschaltereignisse

Virtuelle Umschaltereignisse werden verwendet, um die Anzahl der Ereignisse in einer logischen Sequenz zu erweitern. Zum Beispiel kann der Ausgang von Logik 1 verwendet werden, um die Sequenz in Logik 2 fortzusetzen.

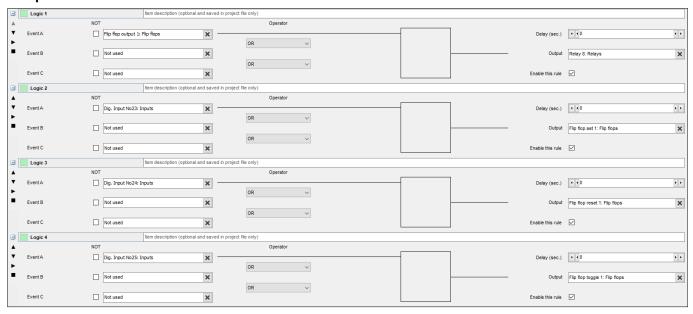
- Der Ausgang Logic 1 ist auf Virtuelles Umschaltereignis 1 gestellt.
- Das Ereignis A in Logic 2 ist Virtuelles Umschaltereignis 1.

Bis zu fünf Ereignisse, die in dieser logischen Folge verwendet werden können (A + B + C in Logik 1 und B + C in Logik 2).

4.7.3.1 Virtuelle Umschaltereignisse

Beschreibung	Anmerkungen	
Virtuelles Umschaltereignis [1-96]*	Die virtuellen Umschaltereignisse 1 bis 96 können über Modbus aktiviert werden. Sie können auch in mehreren Logikzeilen verwendet werden, um die Anzahl der möglichen Ereignisse in einer Sequenz zu erhöhen.	

ANMERKUNG * Zuvor Virtuelles Ereignis [1-96].


4.7.4 Flipflop-Funktion

Die Flipflop-Funktion ermöglicht es, dass ein Impulseingang einen Ausgang, z. B. ein Relais, verriegelt.

Das Ereignis wählt einen Flipflop-Ausgang [1-16] und der Ausgang wählt die Ausgangsfunktion:

- Flipflop-Einstellung [1–16] = ändert den Flipflop-Ausgangsstatus auf Hoch.
- Flipflop-Rückstellung [1-16] = ändert den Flipflop-Ausgangsstatus auf Niedrig.
- Flipflop-Umschaltung [1–16] = ändert den Flipflop-Ausgangszustands von Niedrig auf Hoch oder von Hoch auf Niedrig.

Beispiel

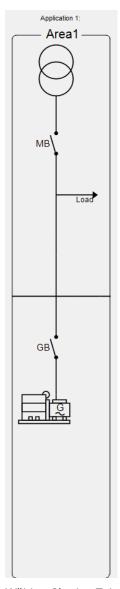
Das Beispiel zeigt, wie der Befehl "Flipflop einstellen 1" konfiguriert werden kann, um das Relais 8 einzustellen:

- Logik 1: Der Flipflop-Ausgang 1 wird zur Einstellung des Relaisausgangs gewählt.
- Logik 2: Der Digitaleingang 23 dient zur Auslösung des Befehls "Flipflop einstellen 1" und aktiviert damit den Relaisausgang.
- Logik 3: Der Digitaleingang 24 dient zur Deaktivierung des Relaisausgangs durch Auslösen des Befehls "Flipflop zurücksetzen 1".
- Logik 4: Der Digitaleingang 25 dient zum Umschalten des Flipflop-Ausgangszustands.
- Relais 8 muss auf M-Logic / Grenzwertrelais eingestellt sein.

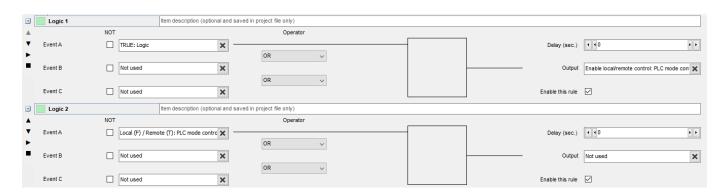
Wenn Zurücksetzen und Einstellen gleichzeitig aktiv sind, gibt das Flipflop dem Befehl Zurücksetzen den Vorrang. Die Funktion Einstellen oder Zurücksetzen darf nicht aktiv sein, wenn die Funktion Umschalten verwendet wird.

Die Flipflops sind auch über Modbus zugänglich.

4.7.5 Virtuelle Schalterereignisse


Beschreibung	Anmerkungen	
Virtuelle Schalterereignisse [1-32]	Die virtuellen Schaltereignisse 1 bis 32 können über Modbus aktiviert werden. Sie können auch in mehreren Logikzeilen verwendet werden, um die Anzahl der möglichen Ereignisse in einer Sequenz zu erhöhen.	

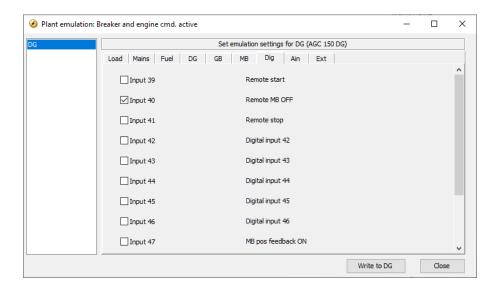
4.7.6 Steuerung im SPS-Modus


Mit der Funktion *Steuerung im SPS-Modus* können Sie eine AGC 150 im AUTO-Modus über eine SPS fernsteuern. Wenn der SPS-Modus mit M-Logic-Befehlen aktiviert ist, können Sie eine AGC 150 mit einer SPS steuern, zum Beispiel mit Digitaleingängen.

Beispiel: Konfiguration und Verwendung der Steuerung im SPS-Modus

1. Verwenden Sie die Anwendungskonfiguration in der Utility-Software, um eine Anwendung einzurichten, zum Beispiel eine Generator- und Netzanwendung.

- 2. Wählen Sie das Tab M-Logic & AOP
- 3. Konfigurieren Sie diese beiden Ereignisse in M-Logic:



Dies ermöglicht einer SPS die Fernsteuerung einer AGC 150 im AUTO-Modus.

- 4. Klicken Sie auf das Symbol 🤌 , um die M-Logic-Einstellungen in die Steuerung zu schreiben.
- 5. Wählen Sie das Tab E/A & Hardware.
- 6. Konfigurieren Sie die Digitaleingänge, um z. B. die AGC 150 zu steuern:

- 7. Klicken Sie das Symbol *Parameter in das Gerät schreiben* 🌌 an, um die Einstellungen in die Steuerung zu schreiben.
- 8. Um die Digitaleingänge zu emulieren, gehen Sie auf das Tab *Anwendungsüberwachung* und klicken Sie auf das Symbol *Emulationsstimuli* .
- 9. Wählen Sie den/die Digitaleingang/Digitaleingänge aus, den/die Sie aktivieren möchten, und klicken Sie auf das Symbol , um die Einstellungen in die Steuerung zu schreiben.

4.7.7 M-Logic-Ereigniszähler

Beschreibung	Anmerkungen
Grenzwert M-Logic-Ereigniszähler [1–8]	Der Ereigniszähler hat den im Fenster Zähler > M-Logic-Ereigniszähler ausgewählten Grenzwert erreicht.
Rückstellung M-Logic- Ereigniszähler [1–8]	Der Ereigniszähler ist zurückgesetzt worden. Die Bedingungen für eine Rückstellung finden sich im Fenster Zähler > M-Logic-Ereigniszähler.

4.7.8 Ereignisse bei Betätigung von Display-Schaltflächen

Die bei einer Betätigung von Display-Schaltflächen ausgelösten Ereignisse können verwendet werden, um mittels der auf dem Display angezeigten Schaltflächen einen bestimmten Ausgang zu aktivieren. So können Sie beispielsweise die Schaltfläche AUFWÄRTS so konfigurieren, dass Sie bei einem Drücken dieser Schaltfläche alle Alarme quittieren.

Zudem kann die Funktion genutzt werden, um zu erkennen, wann eine Schaltfläche gedrückt wird.

4.8 Timer und Zähler

4.8.1 Befehls-Timer

Befehls-Timer werden verwendet, um einen Befehl zu einer bestimmten Zeit auszuführen. Beispiele hierfür sind der automatische Start und Stopp des Aggregats zu bestimmten Uhrzeiten an bestimmten Wochentagen.

Mit der M-Logik können maximal vier Befehls-Timer konfiguriert werden. Jeder Befehls-Timer kann für die folgenden Zeiträume eingestellt werden:

- Einzeltage (MO, DI, MI, DO, FR, SA, SO)
- · MO, DI, MI, DO
- · MO, DI, MI, DO, FR
- MO, DI, MI, DO, FR, SA, SO
- SA, SO

Der "Auto-Start/-Stopp"-Befehl kann in der M-Logik oder in den Eingangseinstellungen programmiert werden. Bei den zeitabhängigen Befehlen handelt es sich um Impulse, die aktiviert werden, wenn sich der Befehls-Timer in der aktiven Periode befindet.

4.8.2 Impulszähler

Zwei konfigurierbare Digitaleingänge können als Zählereingänge verwendet werden. Die beiden Zähler können z. B. für den Kraftstoffverbrauch oder den Wärmestrom verwendet werden. Die beiden Digitaleingänge können nur mit M-Logic als Impulseingänge konfiguriert werden, wie im folgenden Beispiel gezeigt.

Funktionen > Impulszähler

Parameter	Text	Bereich	Werkseinstellung
6851 oder 6861	Wert	0 bis 1000	1
6852 oder 6862	Gerätetyp	Einheit/Impuls Impuls/Einheit	Einheit/Impuls
6853 oder 6863	Dezimalart	Dezimalstellen Dezimalstelle Zwei Dezimalstellen Dezimalstellen	0 Dezimalstellen


4.8.3 Diagnose-Timer

Der Diagnosemodus wird aktiviert, wenn der Diagnose-Timer abläuft. Verwenden Sie die Diagnose, um ECU-Daten zu lesen, ohne den Motor zu starten. Um den Timer zu konfigurieren und die Diagnose zu aktivieren, gehen Sie in der Utility-Software auf *Parameter* und wählen Sie Parameter 6701.

4.9 Schnittstellen

4.9.1 Zusätzliche Bedientafel, AOP-2

Das AOP-2 ist ein zusätzliches Bedienfeld, das über einen CAN-Bus-Kommunikationsanschluss an die Steuerung angeschlossen werden kann. Sie kann als Schnittstelle zur Steuerung für die gleichzeitige Anzeige von Status und Alarmen verwendet werden und verfügt über Tasten, z. B. für die Alarmquittierung und die Betriebsartenwahl.

Die konfigurierbaren LEDs haben die Bezeichnungen 1 bis 16 und die Tasten die Bezeichnungen 1 bis 8.

Konfiguration der CAN-Knoten-ID

Die CAN-Knoten-ID für das AOP-2 kann auf 1-9 eingestellt werden:

- Drücken Sie die Tasten 7 und 8 gleichzeitig, um das Menü zum Ändern der CAN-ID zu aktivieren. Die LED für die aktuelle CAN-ID-Nummer leuchtet, und die LED 16 blinkt.
- 2. Verwenden Sie die Tasten 7 (Erhöhen) und 8 (Verringern), um die CAN-ID gemäß der unten stehenden Tabelle zu ändern.
- 3. Drücken Sie die Taste 6, um die CAN-ID zu speichern und zum Normalbetrieb zurückzukehren.

CAN-ID	Anzeige der CAN-ID-Auswahl
0	LED 16 blinkt (CAN-Bus AUS)
1	LED 1 LEUCHTET. LED 16 blinkt (Standardwert).
2	LED 2 LEUCHTET. LED 16 blinkt.
3	LED 3 LEUCHTET. LED 16 blinkt.
4	LED 4 LEUCHTET. LED 16 blinkt.
5	LED 5 LEUCHTET. LED 16 blinkt.

Programmierung

Verwenden Sie die Utility-Software, um die AOP-2 zu programmieren. Siehe die Hilfe-Funkton in der Utility Software.

4.9.2 Zugriffssperre

Bei aktivierter Zugriffssperre kann der Bediener weder die Parameter der Steuerung noch die Betriebsarten ändern. Die Konfiguration des zugehörigen Digitaleingangs erfolgt über die Utility-Software.

Die Zugangssperre wird in der Regel über einen Schlüsselschalter aktiviert, der hinter der Tür des Schaltschranks angebracht ist. Sobald die Zugriffssperre aktiv ist, können keine Änderungen am Display vorgenommen werden.

Die Zugriffssperre sperrt nur das Display, nicht aber die AOPs oder Digitaleingänge. Die AOP-Tasten können über die M-Logic blockiert werden. Es ist weiterhin möglich, alle Parameter, Timer und den Zustand der Eingänge im Servicemenü anzuzeigen.

Sie können Alarme lesen, aber nicht quittieren, wenn die Zugangssperre aktiviert ist. Nichts kann am Display geändert werden.

Diese Funktion ist ideal für Leihgeräte oder kritische Geräte. Der Betreiber kann nichts ändern. Wenn ein AOP-2 vorhanden ist, kann der Bediener immer noch bis zu 8 verschiedene vordefinierte Dinge ändern.

ANMERKUNG Die Taste *Stopp* ist im SEMI-AUTO-Betrieb nicht aktiv, wenn die Zugriffssperre aktiviert ist. Aus Sicherheitsgründen wird ein Not-Aus-Schalter empfohlen.

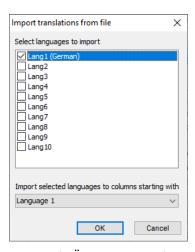
4.9.3 Auswahl der Sprache

Die Steuerung kann mehrere Sprachen anzeigen. Die Standard-Mastersprache ist Englisch und kann nicht geändert werden. Mit der Utility-Software können verschiedene Sprachen konfiguriert werden.

Grundeinstellungen > Steuerungseinstellungen > Sprache

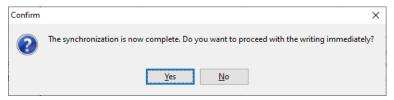
Parameter	Text	Bereich	Werkseinstellung
6081	Auswahl der Sprache	English Sprache [1 bis 11]	English

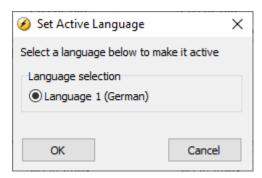
4.9.4 Übersetzungen

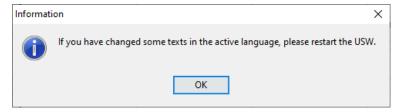

Sie können den Text in der Steuerung mit der Utility-Software übersetzen und anpassen.

Übersetzen Sie den Text in der Steuerung

- 1. Wählen Sie das Tab Übersetzungen in der linken Symbolleiste.
- 2. Klicken Sie auf das Symbol Übersetzungen aus Datei importieren


- 3. Wählen Sie im Pop-up-Fenster die Sprachdatei aus, die Sie importieren möchten.
- 4. Wählen Sie die zu importierende Sprache (lang1) und die Spalte aus, in die die Übersetzungen importiert werden sollen.


- 5. Sobald die Übersetzungen importiert sind, erhalten Sie möglicherweise die Warnung Einige Übersetzungen wurden nicht importiert. Klicken Sie auf OK.
- 6. Um die importierten Übersetzungen in die Steuerung zu schreiben, klicken Sie auf das Symbol *In Steuerung schreiben*
- 7. Wählen Sie im Pop-up-Fenster die Sprache, die Sie in die Steuerung schreiben möchten.


- 8. Klicken Sie auf OK.
- 9. Wählen Sie Ja, um zu bestätigen, dass Sie den Schreibvorgang fortsetzen möchten.

10. Wählen Sie in dem Pop-up-Fenster die Sprache aus, die Sie aktivieren möchten, und klicken Sie auf OK.

11. Klicken Sie in der Informationsmeldung auf die SchaltflächeOK und starten Sie gegebenenfalls die Utility-Software neu.

12. Der Text in der Steuerung wird nun aktualisiert.

Anpassen der Übersetzungen

Um die Übersetzungen anzupassen, klicken Sie auf die Zelle mit dem Text, den Sie bearbeiten möchten. Sie können nun den Text bearbeiten. Der Text wird automatisch gespeichert, wenn Sie die Bearbeitung abgeschlossen haben.

Sie können auch in der Spalte *Hauptsprache* einen Doppelklick auf die zu bearbeitende Phrase oder das zu bearbeitende Wort machen. In dem Pop-up-Fenster können Sie die betreffende Wortfolge für alle Sprachspalten bearbeiten.

Ändern der Position von Übersetzungen

1. Wählen Sie das Symbol Sprachsequenz bearbeiten aus.

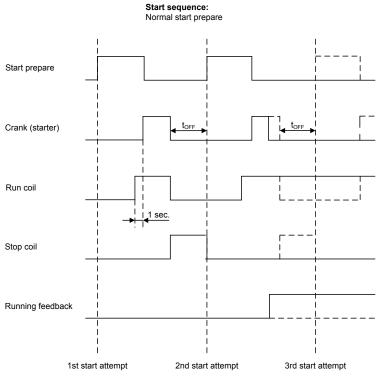
- 2. Wählen Sie in der links aufgeführten Liste die Sprache aus, die (nach der Hauptsprache) in der Reihenfolge an erster Position stehen soll, und klicken Sie auf die Schaltfläche _____, um die ausgewählte Sprache zu verschieben.
- 3. Wiederholen Sie Schritt 2 für die übrigen Sprachen in der aktuellen Sequenz.
- 4. Um die Position einer Sprache in der neuen Reihenfolge zu ändern, klicken Sie auf die Sprache, die Sie verschieben möchten, und verwenden Sie die Schaltflächen *Auf* und *Ab*, um die Sprache zu verschieben.
- 5. Klicken Sie auf OK, wenn Sie fertig sind.

ANMERKUNG Sie können die Hauptsprache nicht bearbeiten.

5. Motorfunktionen

5.1 Motorsequenzen

Die Sequenzen START und STOPP des Motors werden automatisch unter folgenden Bedingungen gestartet:


- Die Betriebsart AUTO ist gewählt.
- Betriebsart SEMI-AUTO: Der Befehl ist ausgewählt.
 - Nur die ausgewählte Sequenz wird gestartet. Wenn zum Beispiel die Taste START gedrückt wird, startet der Motor.

5.2 Motorstartfunktionen

5.2.1 Startsequenz

Normale Startvorbereitung oder erweiterte Startvorbereitung sind die möglichen Startsequenzen für den Motor. In beiden Fällen wird der Betriebsmagnet 1 s vor dem Startrelais (Anlasser) aktiviert.

Normale Sequenz für Startvorbereitung

Der Betriebsmagnet öffnet sich zwischen den Startversuchen, da der Typ der Startspule auf Impuls eingestellt ist. Wenn der Motor die Motor-läuft- Rückmeldung erhält, wird der Betriebsmagnet geschlossen, bis die Stoppsequenz eingeleitet wird. Wenn der Typ des Betriebsmagneten auf "dauerhaft" eingestellt ist, ist der Betriebsmagnet zwischen den Startversuchen geschlossen, bis der Start fehlschlägt oder die Stoppsequenz ihn öffnet.

Motor > Startsequenz > Vor dem Anlassen > Betriebsmagnet

Parameter	Text	Bereich	Werkseinstellung
6151	Betriebsmagnet-Timer	0,0 bis 600,0 s	1,0 s
6152	Betriebsmagnet-Typ	Impuls Dauer	Impuls

Motor > Startsequenz > Vor dem Anlassen > Startvorbereitung

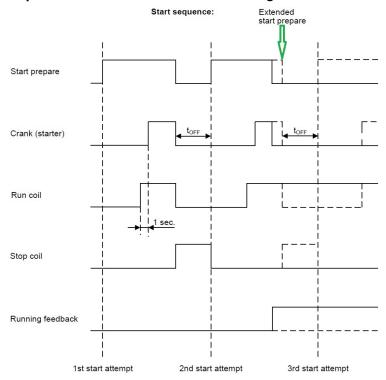
Parameter	Text	Bereich	Werkseinstellung
6181	Startvorbereitung	0,0 bis 600,0 s	5,0 s
6182	Erw. Vorbereitung	0,0 bis 600,0 s	0,0 s

Doppelstarter

In manchen Notfallinstallationen ist die Antriebsmaschine mit einem zusätzlichen Startmotor ausgerüstet. Je nach Konfiguration kann die Funktion "Doppelstarter" zwischen den zwei Startern umschalten oder mehrere Versuche mit dem Standardstarter unternehmen, bevor zum *Doppelstarter* gewechselt wird. Die Funktion wird in den Parametern 6191 und 6192 eingerichtet, die Auswahl eines Relais zum Anlassen mit dem Alternativstarter erfolgt unter *E/A & Hardware-Setup*.

Motor > Startsequenz > Anlassen > Startversuche

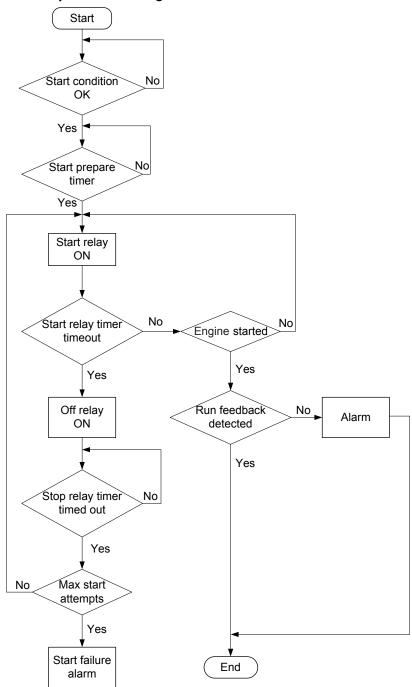
Parameter	Text	Bereich	Werkseinstellung
6191	Einzelstarterversuche	1 bis 100	3
6192	Doppelstarterversuche	0 bis 10	0


Wählen Sie in Parameter 6192 einen Wert aus, der über Null liegt. Dieser Wert bestimmt die Anzahl der Versuche auf jedem Starter vor dem Wechsel zum nächsten. Der Standardstarter hat oberste Priorität. Wenn die Höchstanzahl an erlaubten Versuchen erreicht wird, enden die Startversuche und es erscheint der Alarm "Start fehlgeschlagen". Die Auswahl der Höchstanzahl an erlaubten Versuchen erfolgt in Parameter 6191.

- Ein Wert von 1 in Parameter 6192 resultiert in einer Umschaltfunktion, bei der vor dem Umschalten pro Starter jeweils 1 Versuch gemacht wird.
- Ein Wert von 2 in Parameter 6192 resultiert in einer Umschaltfunktion, bei der vor dem Umschalten pro Starter jeweils 2 Versuche gemacht werden.

Motor > Startsequenz > Anlassen > Anlass-Timer

Parameter	Text	Bereich	Werkseinstellung
6183	Startimpuls:	1,0 bis 600,0 s	5,0 s
6184	Startpause	1,0 bis 99,0 s	5,0 s


Sequenz für erweiterte Startvorbereitung

Sie können den Betriebsmagneten 0 bis 600 s vor dem Anlassen aktivieren. Im diesem Beispiel ist die Timereinstellung 1,0 s.

Die Funktion "Erweiterte Startvorbereitung" hält das Startvorbereitungsrelais geschlossen, bis das Signal "Anlasser ausrücken" oder die Motor-läuft-Erkennung erscheint. Diese Funktion ist hilfreich, wenn Zusatzpumpen für Startkraftstoff verwendet werden, da sie eingeschaltet bleiben, bis der Motor läuft.

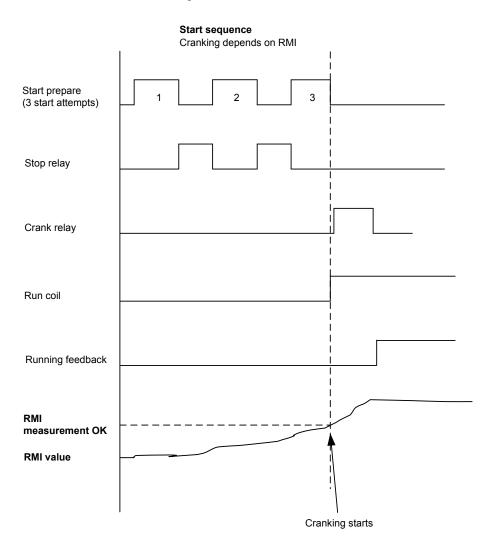
Startsequenz-Flussdiagramm

5.2.2 Bedingungen Start-Sequenz

Die Auslösung der Startsequenz wird durch diese Multi-Eingangsbedingungen gesteuert:

- RMI Öldruck
- RMI Wassertemperatur
- RMI Füllstand
- RMI benutzerdefiniert
- Binäreingang

Ist zum Beispiel kein ausreichender Öldruck aufgebaut, schaltet das Anlasserrelais den Anlassermotor nicht ein.

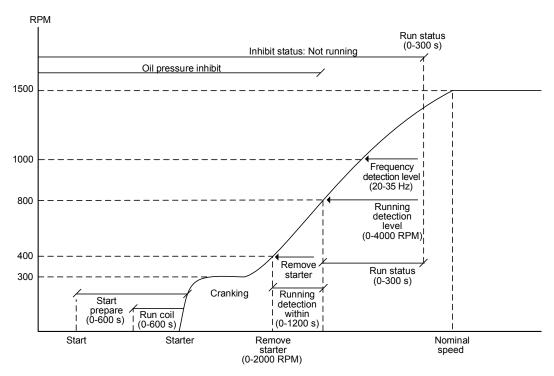

Sie können diese Multi-Eingangsbedingungen nur mit der Utility-Software konfigurieren.

Zusätzliche Informationen

Siehe Eingänge und Ausgänge für die Konfiguration der Eingänge.

Wenn der binäre Startschwellwert verwendet wird, wird der Eingang aus der E/A-Liste in der Utility-Software ausgewählt.

Das nachstehende Diagramm zeigt ein Beispiel, bei dem das RMI-Öldrucksignal langsam ansteigt und der Start am Ende des dritten Startversuchs eingeleitet wird.



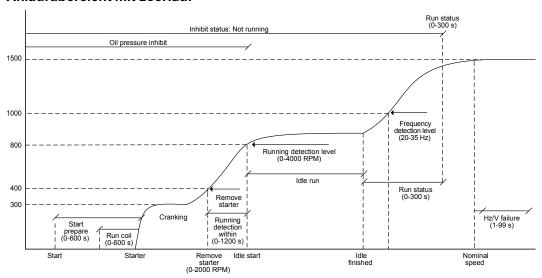
Das Starten wird eingeleitet, sobald die Startschwelle erreicht ist. Standardmäßig wartet die Steuerung, bis der Timer für die Startvorbereitung abgelaufen ist und die Startschwellenbedingungen korrekt sind, bevor das Anlasserrelaisrelais/der Start ausgelöst wird. Sie können dies in Parameter 6185 konfigurieren. Sie können die Art der Startvorbereitung auf "Unterbrechung der Startvorbereitung" ändern, was bedeutet, dass die Steuerung die Startvorbereitung unterbrechen und das Starten einleiten darf, wenn die Startschwellenbedingungen korrekt sind.

Motor > Startsequenz > Vor dem Anlassen > Startschwelle

Parameter	Text	Bereich	Werkseinstellung
6185	Startschwelle, Eingangstyp	Multi-Eingang 20 Multi-Eingang 21 Multi-Eingang 22 Multi-Eingang 23	Multi-Eingang 20
6186	Einschaltschwellen-Sollwert	0,0 bis 300,0	0,0

5.2.3 Anlaufübersicht

Einstellungen zur Startsequenz


Parameter	Text	Beschreibung
6181	Startvorbereitung	Startvorbereitung wird für die Vorbereitung des Starts verwendet, z. B. Vorschmieren oder Vorglühen. Das Startvorbereitungsrelais wird mit Einleitung der Startsequenz aktiviert und wieder deaktiviert, wenn das Startrelais aktiviert ist. Mit Timer-Einstellung 0.0 s ist die Startvorbereitungsfunktion deaktiviert.
6182	Erweiterte Startvorbereitung:	Die erweiterte Vorbereitung aktiviert das Relais <i>Startvorbereitung</i> wenn die Startsequenz eingeleitet wird. Das Relais ist aktiviert, bis die angegebene Zeit abgelaufen ist. Falls die erweiterte Vorbereitungszeit die <i>Start EIN-Zeit</i> überschreitet, wird das Relais <i>Startvorbereitung</i> deaktiviert, wenn das Startrelais ausfällt. Mit Timer-Einstellung 0,0 s ist die erweiterte Startvorbereitungsfunktion deaktiviert.
6183	Startimpuls:	Der Anlasser wird für diese Zeit beim Anlassen aktiviert.
6184	Startpause	Die Startpause ist die Pause zwischen zwei Startimpulsen.
6151	Betriebsmagnet- Timer	Der Timer für den Betriebsmagneten ist ein Sollwert, der festlegt, wie lange der Betriebsmagnet vor dem Anlassen des Motors aktiviert wird. So hat die Motorsteuerung Zeit, vor dem Anlassen zu starten.
6174	Anlasser ausrücken	Der Anlasser wird ausgerückt, wenn der Drehzahlsollwert erreicht ist. Diese Funktion ist nur aktiv, wenn der Typ der Motor-läuft-Erkennung entweder als Impulsaufnehmer oder MK-U/min konfiguriert ist. Beim Impulsaufnehmer berechnet die Steuerung die Drehzahl des Aggregats aus der Frequenz, wenn die konfigurierte Anzahl der Zähne 0 ist.
6173	Signal "Motor läuft", U/minPegel	Der Sollwert definiert das Niveau der Motor-läuft-Erkennung in U/min. (nur wenn die Art des Signals "Motor läuft" entweder als Impulsaufnehmer oder MK-U/min. konfiguriert ist).
6351	Signal "Motor läuft"	Dieser Timer stellt sicher, dass der Motor von den Niveaus Drehzahl, Anlasser ausrücken und Motor-läuft-Erkennung ausgeht (nur wenn die Art des Signals "Motor läuft" entweder als Impulsaufnehmer oder MK-U/min. konfiguriert ist). Wenn andere Arten der Motor-läuft-Erkennung als Impulsaufnehmer oder MK-U/min. verwendet werden, bleibt der Anlasser so lange eingeschaltet, bis das Frequenzerkennungsniveau erreicht ist.

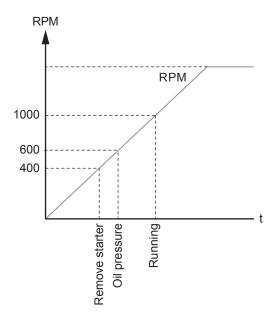
Parameter	Text	Beschreibung
		Wenn der Timer abgelaufen und das Niveau nicht erreicht ist, wird die Startsequenz mit einem Startversuch wiederholt. Wenn alle Startversuche genutzt werden, wird der Alarm <i>Startfehler</i> aktiviert.
6160	Status "Motor läuft"	Der Timer startet, wenn das Niveau der Motor-läuft-Erkennung bzw. Frequenzerkennung erreicht ist. Wenn der Timer abläuft, wird die Unterdrückungsfunktion <i>Nicht in Betrieb</i> deaktiviert und die laufenden Alarme und Ausfälle werden aktiviert.

Fehler in Bezug auf die Startsequenz

Parameter	Text	Beschreibung
4530	Anlassfehleralarm	Dieser Alarm wird aktiviert, wenn der Impulsaufnehmer als primäre Rückmeldung "Motor läuft" konfiguriert ist und die angegebene Drehzahl nicht vor Ablauf der Verzögerung erreicht wird.
4540	Alarm Rückmeldung "Motor läuft"	Dieser Alarm wird aktiviert, wenn ein Fehler an der primären Motor-läuft- Rückmeldung vorliegt. Dies geschieht z. B., wenn die primäre Motor-läuft- Rückmeldung auf einen digitalen Eingang ohne Motor-läuft-Erkennung konfiguriert ist und eine aktive sekundäre Motor-läuft- Rückmeldung erkennt, dass der Motor in Betrieb ist. Die einzustellende Verzögerung ist die Zeit von der sekundären Motor-läuft- Erkennung bis zur Auslösung des Alarms.
4560	Hz/V-Ausfallalarm	Dieser Alarm wird aktiviert, wenn die Frequenz und die Spannung nicht innerhalb der in Blackout df/dUmax konfigurierten Grenzen liegen, nachdem die Rückmeldung "Motor läuft" empfangen wurde.
6352	Motor extern gestoppt	Dieser Alarm wird ausgelöst, wenn die Laufsequenz aktiv ist und der Motor ohne Befehl der Steuerung unterhalb der Schwelle der Motor-läuft-Erkennung und Frequenzerkennung liegt.

Anlaufübersicht mit Leerlauf

Die Sollwerte und Alarme sind die gleichen wie oben, außer für die Leerlauffunktion.

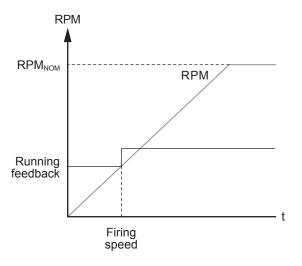

5.2.4 Startfunktionen

Die Steuerung startet den Motor, wenn der Startbefehl gegeben wird. Die Startsequenz wird unterbrochen, sobald der "Anlasser-ausrücken"-Befehl erfolgt oder ein "Motor-läuft"-Signal vorhanden ist.

Der Grund für die zwei Optionen zur Deaktivierung des Startrelais ist die Möglichkeit, die Alarme mit dem "Motor läuft"-Signal verzögern zu können.

Besteht keine Möglichkeit, die Alarme mit "Motor-läuft"-Status bei niedrigen Drehzahlen zu aktivieren, muss die "Anlasserausrücken"-Funktion verwendet werden.

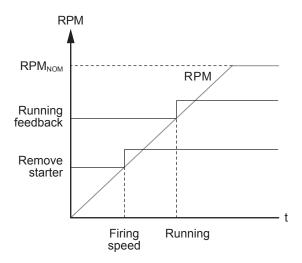
Ein Beispiel hierfür ist der Öldruck-Alarm. Normalerweise ist dieser mit der Fehlerklasse "Abstellung" (Shutdown) konfiguriert. Wenn jedoch der Startermotor bei 400 U/min abgeschaltet werden muss und der Öldruck nicht vor 600 U/min einen Wert über dem Abschaltsollwert erreicht, schaltet der Motor ab, wenn der spezifische Alarm bei der voreingestellten Drehzahl von 400 U/min aktiviert wird. In diesem Fall muss die Rückmeldung "Motor läuft" bei einer über 600 U/min liegenden Drehzahl aktiviert werden.



5.2.5 Digitale Rückmeldungen

Ist ein externes "Motor-läuft"-Überwachungsrelais installiert, können die Digitaleingänge für "Motor läuft" oder "Anlasser ausrücken" verwendet werden.

Rückmeldung "Motor läuft"

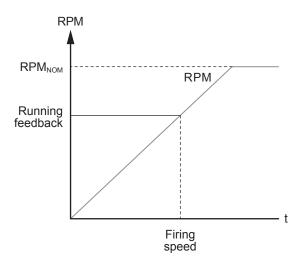

Ist die digitale Rückmeldung "Motor läuft" aktiv, wird das Startrelais deaktiviert und der Anlassermotor ausgeschaltet.

Das Diagramm zeigt, wie die digitale Rückmeldung "Motor-läuft" aktiviert wird, wenn der Motor seine Zünddrehzahl erreicht hat.

Anlasser ausrücken

Ist der Digitaleingang "Anlasser ausrücken" aktiv, wird das Startrelais deaktiviert und der Anlassermotor ausgeschaltet.

Das Diagramm zeigt, wie der Eingang zum Ausrücken des Anlassers aktiviert wird, wenn der Motor seine Zünddrehzahl erreicht hat. Bei laufendem Motor ist die digitale Rückmeldung "Motor läuft" aktiviert.

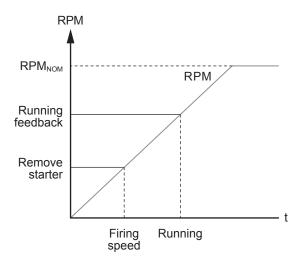

ANMERKUNG Der Eingang "Anlasser ausrücken"muss auf einen freien Digitaleingang gelegt werden.

5.2.6 Analoges Tachosignal

Falls ein Impulsaufnehmer (MPU) verwendet wird, kann eine bestimmte Drehzahl für das Abschalten des Startrelais konfiguriert werden.

Rückmeldung "Motor läuft"

Die Zeichnung zeigt, wie die Rückmeldung "Motor läuft" bei Erreichen der Zünddrehzahl erkannt wird. Die Werkseinstellung ist 1000 U/min.



Achtung

Die Werkseinstellung 1000 U/min ist höher als die Drehzahl des typischen Anlassers. Stellen Sie die Einstellung auf einen niedrigeren Wert ein, um eine Beschädigung des Anlassers zu vermeiden.

Eingang "Anlasser ausrücken"

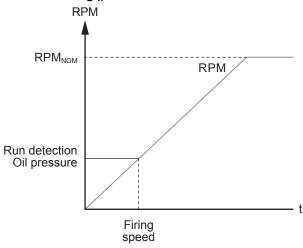
Die Zeichnung zeigt, wie der Sollwert für "Anlasser ausrücken" beim Zünddrehzahl-Niveau erfasst wird. Die Werkseinstellung ist 400 U/min.

Bei Verwendung des Impulsaufnehmer-Eingangs muss die Anzahl der Zähne des Schwungrads konfiguriert werden. Wenn Null, berechnet die Steuerung für die Funktion "Anlasser ausrücken" die Drehzahl aus der Aggregatfreguenz.

Motor > Startsequenz > Nach dem Anlassen > Anlasser ausrücken

Parameter	Text	Bereich	Werkseinstellung
6174	Anlasser ausrücken	1 bis 2000 U/min	400 U/min.

ANMERKUNG Die Funktion Anlasser ausrücken kann über Impulsaufnehmer oder einen Digitaleingang genutzt werden.


5.2.7 Öldruck

Die Multi-Eingänge der Klemmen 20, 21, 22 und 23 können für die Rückmeldung "Motor läuft" verwendet werden. Die entsprechenden Klemmen müssen als RMI-Eingang für Öldruckmessung konfiguriert werden. Verwenden Sie dazu die Utility Software.

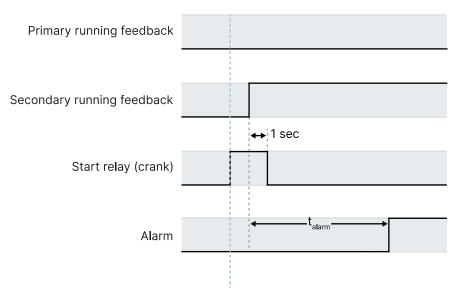
- 1. Wählen Sie die Registerkarte E/A & Hardware-Setup
- 2. Wählen Sie die gewünschte Registerkarte für den Multi-Eingang aus.
- 3. Für Eingangstyp wählen Sie RMI-Öldruck.

Wenn der Öldruck über den eingestellten Wert ansteigt, wird der Betrieb erkannt und die Startsequenz beendet.

Rückmeldung "Motor läuft"

Zusätzliche Informationen

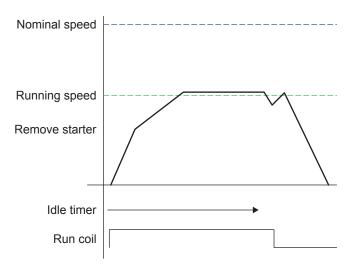
Siehe Motor-läuft-Rückmeldung für die Konfiguration der Parameter.


5.3 Rückmeldung "Motor läuft"

Die Steuerung erkennt anhand der Motor-läuft-Rückmeldung, ob der Motor in Betrieb ist.

- · Ein Digitaleingang
- Drehzahl, gemessen mit Impulsaufnehmer (Sollwert 0 bis 4000 RPM)
- MK
- Frequenzmessung (20 bis 35 Hz)

Die ausgewählte Motor-läuft- Rückmeldung ist die primäre Rückmeldung. Es werden jedoch alle verfügbaren Motor-läuft-Rückmeldungen für die Motor-läuft-Erkennung verwendet. Wenn die primäre Motor-läuft-Rückmeldung kein Laufen des Motors erkennt, bleibt das Anlasserrelais noch eine Sekunde lang aktiviert.


5.3.1 Startsequenz, Rückmeldung "Motor-läuft"

- Wenn eine Motor-läuft-Rückmeldung auf der Grundlage einer der sekundären Auswahlmöglichkeiten erkannt wird, wird der Motor gestartet.
- Wenn keine Rückmeldung "Motor-läuft" erkannt wird, wird die Startsequenz unterbrochen.
- In Parameter 6176 können Sie eine Verzögerungszeit einstellen, bevor die Startsequenz gestoppt wird.

5.3.2 Betriebsverzögerungszeit

Der Motor funktioniert auch dann noch, wenn ein Tachosensor beschädigt oder verschmutzt ist.

Sobald der Motor läuft, erfolgt die Motor-läuft-Erkennung auf Basis aller verfügbaren Typen.

5.3.3 Abbruch der Startsequenz

Die Startsequenz wird unter folgenden Bedingungen abgebrochen:

Ereignis	Anmerkungen
Stoppsignal	
Startfehler	
Anlasser-ausrücken-Signal	Tacho-Sollwert.
Rückmeldung "Motor läuft"	Digitaleingang.
Rückmeldung "Motor läuft"	Tacho-Sollwert.
Rückmeldung "Motor läuft"	Die Frequenzmessung liegt zwischen 30,0 und 35,0 Hz. Die Frequenzmessung erfordert eine Spannungsmessung von 30 % von U _{NENN} . Die über die Frequenzmessung erfolgende Betriebserkennung kann als Ersatz für die Messung über MPU, Digitaleingang oder MK dienen.
Rückmeldung "Motor läuft"	Öldruck-Sollwert
Rückmeldung "Motor läuft"	MK (Motorkommunikation)
Not-Aus	
Alarm	Alarme mit Fehlerklasse "Abstellung" oder "Auslösung und Stopp"
Taste Stopp am Display	Nur in SEMI-AUTO oder Manuell
Modbus-Stoppbefehl	Betriebsart SEMI-AUTO oder Manuell
Digitaler Stopp-Eingang	Betriebsart SEMI-AUTO oder Manuell
Deaktivierung des "Auto Start/Stopp"- Eingangs	AUTO-Modus im Inselbetrieb.
Betriebsart	Es ist nicht möglich, die Betriebsart BLOCKIEREN zu wählen, während das Aggregat läuft.

Motor > Motor-läuft-Erkennung

Parameter	Text	Bereich	Werkseinstellung
6171	Anzahl der Zähne für Impulsaufnehmer- Lauferkennung	0 bis 500 Zähne	0 Zähne*
6172	Primäres Signal "Motor läuft", Typ	Digitaleingang Impulsaufnehmer Eingang Frequenz MK Multi-Eingänge 20 bis 23	Frequenz
6173	Motor-läuft-Erkennung	0 bis 4000 U/min	1000 U/min.
6175	Öldruck	0,0 bis 150,0 bar	0,0 bar
6176	Betriebsverzögerung	0,0 bis 5,0 s	0,0 s

ANMERKUNG

* Wenn kein Impulsaufnehmer vorhanden ist (d.h. Parameter 6171 ist 0), berechnet die Steuerung die Drehzahl des Aggregats aus der Frequenz. Dieser Wert wird für die Funktion zum Ausrücken des Anlassers sowie für den Überdrehzahl- und Unterdrehzahlschutz verwendet.

5.3.4 MPU-Drahtbruch

Die Drahtbruchfunktion des Impulsaufnehmers ist nur aktiv, wenn der Motor nicht läuft. In diesem Fall wird ein Alarm ausgelöst, wenn die Drahtverbindung zwischen der Steuerung und dem Impulsaufnehmer unterbrochen wird. Der Drahtbruchalarm des Impulsaufnehmers wird aktiviert, wenn mehr als $400~\text{k}\Omega$ vorhanden sind.

Motor > Motor-läuft-Erkennung > Impulsaufnehmer-Drahtbruch

Parameter	Text	Bereich	Werkseinstellung
4551	Tacho-Sensor	Tacho-Sensor Hall-Sensor*	Tacho-Sensor
4552	Ausgang A	Relais und M-Logik	Nicht benutzt
4553	Ausgang B	Relais und M-Logik	Nicht benutzt
4554	Aktivieren	AUS EIN	AUS
4555	Fehlerklasse	Fehlerklassen	Warnung

ANMERKUNG * Bei einem Hall-Sensor gibt es keinen Drahtbruch.

5.3.5 D+ (Ausfall des Ladegenerators)

Wenn die Funktion D+ aktiviert ist, ist das Startrelais deaktiviert. Das D+ schaltet sich aus, wenn der Startvorgang abgebrochen wird. Der Alarm wird aktiviert, wenn nach Ablauf der Verzögerungszeit keine D+-Rückmeldung vom Ladegenerator vorliegt.

Motor > Motor-läuft-Erkennung > Ladegenerator, Fehler

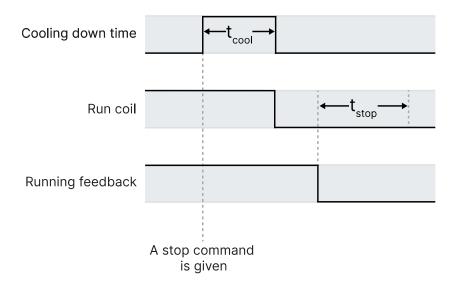
Parameter	Text	Bereich	Werkseinstellung
4991	Sollwert	5,50 bis 30,00 V	6,00 V
4992	Timer	0,0 bis 999,0 s	10,0 s
4993	Ausgang A	Relais und M-Logik	Nicht benutzt
4994	Ausgang B	Relais und M-Logik	Nicht benutzt
4995	Aktivieren	AUS	AUS

Parameter	Text	Bereich	Werkseinstellung
		EIN	
4996	Fehlerklasse	Fehlerklassen	Warnung

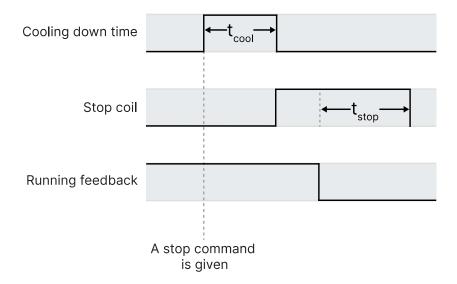
Motor > Startsequenz > Nach dem Anlassen > Anlasser ausrücken

Parameter	Text	Bereich	Werkseinstellung
6174	Anlasser ausrücken	1 bis 2000 U/min	400 U/min.

5.3.6 Ausgang "Motor läuft"


Der Motor-läuft-Status kann so eingestellt werden, dass ein digitales Ausgangssignal ausgegeben wird, sobald der Motor läuft.

Konfigurieren Sie den Motor-läuft-Status unter Einstellungen > Motor-läuft-Status (Parameter 6160). Konfigurieren Sie den Timer für die Zeit, die die Motor-läuft-Erkennung vorhanden sein muss, bevor der *Motor-läuft-Status* aktiviert wird. Änderungen der Einstellungen des Timers für den Motor-läuft-Status betreffen außerdem die Alarmunterdrückung im Status *Motor läuft nicht*.


5.4 Motorstoppfunktionen

5.4.1 Stoppsequenz

Stop sequence: Run coil

Stop sequence: Stop coil

Die Stoppsequenz wird aktiviert, sobald ein Stoppbefehl ansteht. Die Stoppsequenz umfasst die Nachlaufzeit, wenn der Stopp ein 'normaler' oder ein kontrolliert ausgelöster Stopp ist.

Motor > Stoppsequenz > Nachlauf

Parameter	Text	Bereich	Werkseinstellung
6211	Abkühlungszeit	0 bis 9900 s	240 s

5.4.2 Stoppsequenz-Befehle für den Generator

Beschreibung	Nachlaufzeit	Stopp	Anmerkungen
Betriebsart AUTO, Stopp	•	•	
Auslösungs- und Stoppalarm	•	•	
Taste Stopp am Display	(●)	•	Betriebsart SEMI-AUTO oder Manuell Wird die Taste <i>Stopp</i> zweimal gedrückt, ist die Nachlaufzeit unterbrochen.
"Auto Start/Stopp" deaktivieren	•	•	Betriebsart AUTO: Inselbetrieb
Not-Aus		•	Gs öffnet, Aggregat schaltet ab.

Die Unterbrechung der Stoppsequenz kann nur während der Nachlaufzeit erfolgen. Wenn der Status des Aggregats "Motorstillstand" ist, ist der Start einer neuen Startsequenz nur möglich, wenn das Aggregat stillsteht.

In diesen Situationen kann es zu einer Unterbrechung der Nachlaufzeit kommen:

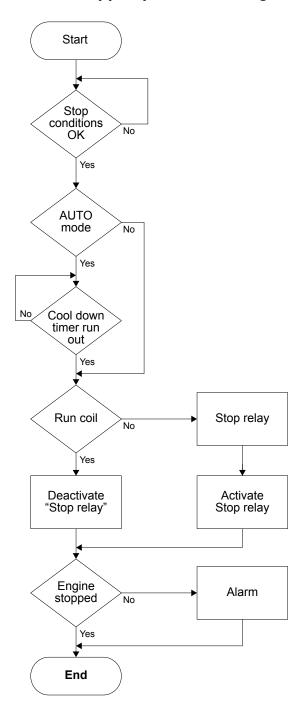
Ereignis	Anmerkungen
Netzfehler	Notstrom (oder Notstromüberlagerung) und AUTO gewählt.
Taste Start wird gedrückt/Fernbedienungsbefehl wird gegeben	Betriebsart SEMI-AUTO: Der Motor läuft im Leerlauf/ Nenndrehzahl.
Digitaler Starteingang	Betriebsart AUTO: Inselparallelbetrieb
Taste <i>Gs schließen</i> wird gedrückt/Fernbedienungsbefehl wird gegeben	Nur in den Betriebsarten SEMI-AUTO und MANUELL.

5.4.3 Einstellungen zur Stoppsequenz

Motor > Stoppsequenz > Stoppfehler

Parameter	Text	Bereich	Werkseinstellung
4581	Timer Stoppfehler	10,0 bis 120,0 s	30,0 s
4582	Stoppfehler, Ausgang A	Relais und M-Logik	Nicht benutzt
4583	Stoppfehler, Ausgang B	Relais und M-Logik	Nicht benutzt
4584	Aktivierung des Stoppfehler- Alarms	AUS EIN	EIN
4585	Stoppfehler-Alarm Fehlerklasse	Fehlerklassen	Abstellung

Motor > Stoppsequenz > Erweiterter Stopp

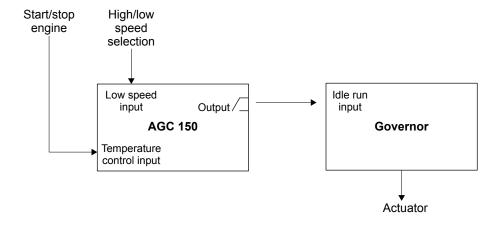

Parameter	Text	Bereich	Werkseinstellung
6212	Erweiterter Stopp - Timer	0 bis 300,0 s	5,0 s

Motor > Stoppsequenz > Stoppschwelle

Parameter	Text	Bereich	Werkseinstellung
6213	Eingangstyp	Multi-Eingänge 20 bis 23 M-Logic Temperatureingänge der Motorkommunikation	Multi-Eingang 20
6214	Schwellenwert/Sollwert	0 bis 482 °	0 °

ANMERKUNG Wird die Nachlaufzeit auf 0,0 s eingestellt, erfolgt eine unendliche Nachlaufzeit.

5.4.4 Stoppsequenz-Flussdiagramm


5.5 Leerlauf

Der Leerlaufbetrieb ändert die Start- und Stoppsequenzen, damit der Motor auch bei niedrigen Temperaturen laufen kann.

Diese Funktion wird typischerweise in Anlagen verwendet, in denen der Motor bei niedrigen Temperaturen arbeiten muss. Dies kann zu Startproblemen führen oder den Motor beschädigen. Sie können die Funktion auch verwenden, wenn der Motor bei niedriger Drehzahl laufen muss, bis eine bestimmte Temperatur erreicht ist.

Sie ist mit und ohne Timer möglich. Es gibt einen Timer für die Startsequenz und einen für die Stoppsequenz. Die Timer machen die Funktion flexibel.

Sie müssen den DZR für die Leerlauffunktion mit einem digitalen Signal von der Steuerung vorbereiten.

Es werden zwei Digitaleingänge zur Steuerung verwendet:

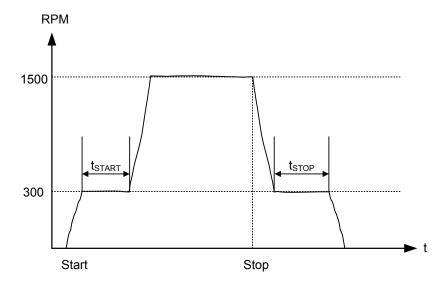
- Eingang für niedrige Drehzahl. Über diesen Eingang wird das Umschalten zwischen Leerlauf- und Nenndrehzahl vorgenommen. Diese Eingabe verhindert nicht, dass der Motor abgestellt wird. Es handelt sich lediglich um eine Auswahl zwischen Leerlauf und Nenndrehzahl.
- 2. Eingang für Temperaturregelung Wenn dieser Eingang aktiviert wird, startet der Motor. Solange dieser Eingang aktiviert ist, kann der Motor nicht angehalten werden.

Sie können den Eingang für niedrige Geschwindigkeit zusammen mit einem Timer verwenden, um die Leerlauffunktion zu wählen. Wenn ein Eingang und ein Timer gleichzeitig verwendet werden, hat der Digitaleingang Vorrang. Wenn z. B. die Leerlauffunktion mit dem Eingang für niedrige Geschwindigkeit aktiviert wird und der Starttimer läuft, ist die Leerlauffunktion weiterhin aktiv, wenn der Timer abläuft, bevor der Digitaleingang deaktiviert wird.

ANMERKUNG Turbolader, die nicht für den Betrieb im niedrigen Drehzahlbereich ausgelegt sind, können beschädigt werden, wenn der Motor zu lange im Leerlauf bleibt.

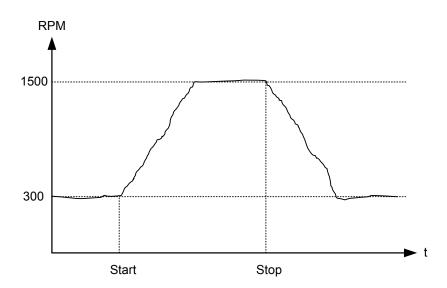
Motor > Startsequenz > Leerlauf

Parameter	Text	Bereich	Werkseinstellung
6291	Timer Leerlauf-Start	0,0 bis 999,0 min	300,0 min
6292	Leerlauf-Start aktivieren	AUS EIN	AUS
6295	Ausgang A	Relais und M-Logik	Nicht benutzt
6296	Freigabe Leerlauf	AUS EIN	AUS


Motor > Stoppsequenz > Leerlauf

Parameter	Text	Bereich	Werkseinstellung
6293	Stopp-Timer	0,0 bis 999,0 min	300,0 min
6294	Freigabe Stopp	AUS EIN	AUS

Beispiele


Leerlaufdrehzahl während dem Starten/Stoppen

- In diesem Beispiel sind beide Timer aktiviert.
- Die Start- und Stoppsequenzen werden so geändert, dass der Motor zunächst im Leerlauf verbleibt, bevor er beschleunigt wird.
- Nach dem Absetzen des Stoppbefehls geht das Aggregat von Nenndrehzahl auf Leerlaufdrehzahl, bevor es ganz abgestellt wird.

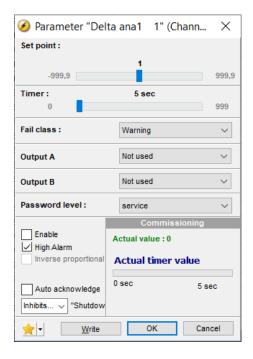
Leerlaufdrehzahl mit einem auf niedrige Drehzahl konfigurierten Digitaleingang

- Die Leerlaufdrehzahl bei aktivierter niedriger Drehzahl läuft im Leerlauf, bis der Eingang für die niedrige Drehzahl deaktiviert wird, und dann regelt der Motor auf die Nennwerte.
- Um ein Stoppen des Motors zu verhindern, muss der Digitaleingang *Temperaturregelung* immer eingeschaltet bleiben. Die Zeitkurve der Geschwindigkeit des Motors sieht dann wie folgt aus:

ANMERKUNG Der Öldruckalarm (RMI-Öl) ist während des Leerlaufs aktiviert, wenn er eingeschaltet ist.

5.5.1 Temperaturabhängiger Leerlaufstart

Dies ist ein Beispiel für ein System, das bei Leerlaufdrehzahl anläuft, wenn die Kühlmitteltemperatur unter einem bestimmten Wert liegt. Wenn die Temperatur den angegebenen Wert überschreitet, fährt der Motor auf die Nennwerte hoch.


Um diese Funktion auszuführen, müssen Sie den Leerlauf einschalten und den digitalen Ausgang konfigurieren.

Motor > Startsequenz > Leerlauf

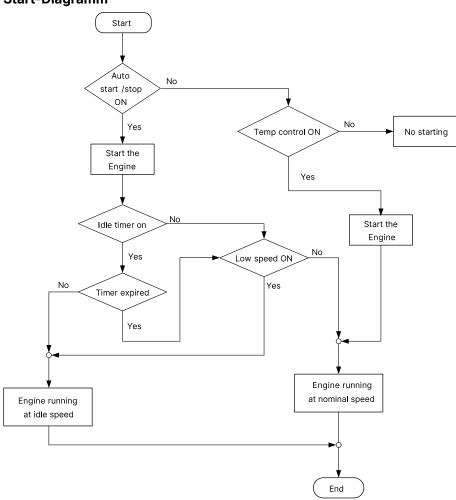
Parameter	Text	Bereich	Wert einstellen auf
6296	Leerlauf	AUS EIN	EIN

Beispiel

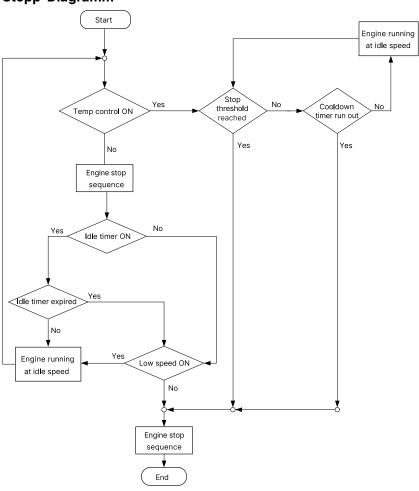
Die Funktion verwendet Delta-Analog 1 (Parameter 4601, 4602 und 4610) und eine M-Logic-Zeile. Nach dem Start, wenn die Kühlmitteltemperatur unter 110 °C liegt, befindet sich die Steuerung im Leerlauf. Sobald die Temperatur 110 °C erreicht hat, fährt die Steuerung automatisch auf volle Geschwindigkeit hoch.

5.5.2 Unterdrückung

Die Alarme, die durch die Unterdrückungsfunktion deaktiviert werden, werden auf die übliche Weise gesperrt, mit Ausnahme der Öldruckalarme, RMI-Öl 20, 21, 22 und 23. Diese Alarme sind auch im Leerlauf aktiv.


5.5.3 Motor-läuft-Signal

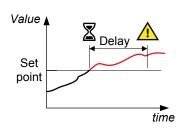
Sie müssen die Motor-läuft-Rückmeldung aktivieren, wenn sich der Motor im Leerlauf befindet.


5.5.4 Flußdiagramme Leerlaufdrehzahl

Die Flussdiagramme zeigen das Starten und Stoppen des Motors durch die Eingänge *Temperaturkontrolle* und *Niedrige Drehzahl*.

Start-Diagramm

Stopp-Diagramm


5.6 Motorschutzvorrichtungen

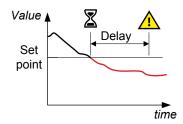
Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit	Alarme
Überdrehzahl	-	12	-	2
Unterdrehzahl	-	14	-	1

5.6.1 Überdrehzahl

Diese Alarme weisen den Bediener darauf hin, dass der Motor zu schnell läuft.

Die Alarmreaktion basiert auf der Motordrehzahl in Prozent der Nenndrehzahl. Wenn die Motordrehzahl über den Sollwert für die Verzögerungszeit ansteigt, wird der Alarm aktiviert.

Motor > Schutzfunktionen > Drehzahlabhängige Schutzfunktionen > Überdrehzahl > Überdrehzahl [1 oder 2]


Parameter	Text	Bereich	Überdrehzahl 1	Überdrehzahl 2
4511 oder 4521	Sollwert	100 bis 150 %	110%	120%
4512 oder 4522	Timer	0 bis 3200 s	5 s	1 s
4513 oder 4523	Ausgang A	Relais und M-Logik	Nicht benutzt	Nicht benutzt

Parameter	Text	Bereich	Überdrehzahl 1	Überdrehzahl 2
4514 oder 4524	Ausgang B	Relais und M-Logik	Nicht benutzt	Nicht benutzt
4515 oder 4525	Aktivieren	AUS EIN	AUS	AUS
4516 oder 4526	Fehlerklasse	Fehlerklassen	Warnung	Abstellung

5.6.2 Unterdrehzahl

Dieser Alarm macht den Bediener darauf aufmerksam, dass der Motor zu langsam läuft.

Die Alarmreaktion basiert auf der Motordrehzahl in Prozent der Nenndrehzahl. Wenn die Motordrehzahl für die Verzögerungszeit unter den Sollwert fällt, wird der Alarm aktiviert.

Motor > Schutzfunktionen > Drehzahlabhängige Schutzfunktionen > Unterdrehzahl > Unterdrehzahl

Parameter	Text	Bereich	Werkseinstellung
4591	Sollwert	50 bis 100 %	90%
4592	Timer	0 bis 3200 s	5 s
4593	Ausgang A	Relais und M-Logik	Nicht benutzt
4594	Ausgang B	Relais und M-Logik	Nicht benutzt
4595	Aktivieren	AUS EIN	AUS
4596	Fehlerklasse	Fehlerklassen	Warnung

5.6.3 MK-Überdrehzahl

Motor > Schutzfunktionen > MK-basierte Schutzmaßnahmen > Überdrehzahl > MK-Überdrehzahl

Parameter	Text	Bereich	Werkseinstellung
7601	Sollwert	100,0 bis 150,0 %	110,0%
7602	Timer	0,0 bis 3200 s	5,0 s
7603	Ausgang A	Relais und M-Logik	Nicht benutzt
7604	Ausgang B	Relais und M-Logik	Nicht benutzt
7605	Aktivieren	AUS EIN	AUS
7606	Fehlerklasse	Fehlerklassen	Warnung

5.7 Motorkommunikation

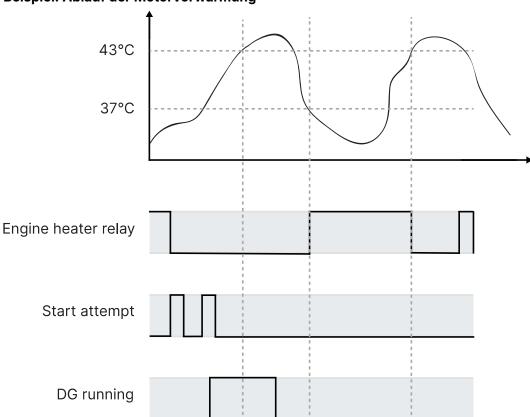
Die AGC unterstützt J1939 und kann mit jedem Motor kommunizieren, der das generische J1939 verwendet. Darüber hinaus kann die AGC mit einer Vielzahl von Steuergeräten und Motoren kommunizieren.

Zusätzliche Informationen

Unter **Motorkommunikation AGC 150** finden Sie eine vollständige Liste der unterstützten Steuergeräte und Motoren sowie detaillierte Informationen zu jedem Protokoll.

Abgasnachbehandlung (Tier 4 Final/Stufe V)

Die AGC 150 unterstützt die Anforderungen von Tier 4 (Final)/Stufe V. Sie ermöglicht die Überwachung und Steuerung des Abgasnachbehandlungssystems, wie in der Norm gefordert.


Zusätzliche Informationen

Eine Beschreibung der Abgasnachbehandlung finden Sie in der Bedienungsanleitung.

5.8 Motorvorwärmer

Diese Funktion regelt die Kühlmitteltemperatur. Ein Temperatursensor wird verwendet, um ein externes Heizsystem zu aktivieren, das den Motor auf einer Mindesttemperatur hält. Diese Funktion ist nur aktiv, wenn der Motor abgestellt ist.

Beispiel: Ablauf der Motorvorwärmung

Die Funktion umfasst einen Sollwert und eine Hysterese. Im Beispiel liegt der Sollwert bei 40 °C und die Hysterese bei 3 °C. Die Steuerung öffnet das Motorvorheizungsrelais, wenn der Motor 43 °C erreicht hat, und schließt es, wenn die Motortemperatur 37 °C beträgt.

Für die Motorvorheizung muss ein Relais ausgewählt werden. Wenn ein Hilfsrelais benötigt wird, kann dies in der M-Logik programmiert werden.

Wenn die Motorheizung aktiv ist und der manuelle Steuerbefehl aktiviert wurde, wird das Relais der Motorheizung geöffnet. Wenn der Befehl erneut aktiviert wird, schließt das Heizungsrelais, wenn die Temperatur unter dem Sollwert liegt.

Funktionen > Motorheizung

Parameter	Text	Bereich	Werkseinstellung
6321	Sollwert	20 bis 250 °C	40 °C
6322	Ausgang A	Relais und M-Logik	Nicht benutzt
6323	Eingangstyp	Multi-Eingänge 20 bis 23	Multi-Eingang 20

Parameter	Text	Bereich	Werkseinstellung
		Temperatureingänge der Motorkommunikation	
6324	Hysterese	1 bis 70 °C	3 °C

5.8.1 Motorvorheizungsalarm

Die Steuerung des Motorvorheizungsalarms erhält einen Temperatursollwert und einen Timer. Wenn die Temperatur unter den Sollwert sinkt und das Motorheizungsrelais geschlossen ist, startet der Timer. Wenn der Timer abläuft und die Temperatur unter dem Sollwert liegt, wird der Alarm aktiviert.

Funktionen > Motorheizung > Motorheizung 1

Parameter	Text	Bereich	Werkseinstellung
6331	Sollwert	10 bis 250 °C	30 °C
6332	Timer	1,0 bis 300,0 s	10,0 s
6333	Ausgang A	Relais und M-Logik	Nicht benutzt
6334	Ausgang B	Relais und M-Logik	Nicht benutzt
6335	Aktivieren	AUS EIN	AUS
6336	Fehlerklasse	Fehlerklassen	Warnung

5.9 Lüftung

Die Lüftungsfunktion dient der Steuerung der Motorkühlung. Der Zweck ist die Verwendung eines Multi-Eingangs zur Messung der Kühlwassertemperatur. Auf diese Weise wird eine externe Belüftung aktiviert, um den Motor unter einer maximalen Temperatur zu halten.

Wählen Sie die Art des zu verwendenden Eingangs in Parameter 6323 Motorheizung.

 ${\tt Funktionen > L\"{u}fter > Einzelner \,\,L\"{u}fter \,\,Start/Stopp > L\"{u}fterkonfiguration > Maximale} \,\,Bel\"{u}ftung$

Parameter	Text	Bereich	Werkseinstellung
6461	Sollwert	20 bis 250 °C	90 °C
6462	Ausgang A	Relais und Grenzwerte	Nicht benutzt
6463	Hysterese	1 bis 70 °C	5 °C
6464	Aktivieren	EIN AUS	AUS

5.9.1 Max. Lüftungsalarme

Es gibt zwei Lüftungsalarme.

Funktionen > Lüfter > Einzelner Lüfter Start/Stopp > Lüfteralarme

Parameter	Text	Bereich	Werkseinstellung
6471	Sollwert	20 bis 250 °C	95 °C
6472	Timer	0 bis 60 s	1 s
6473	Ausgang A	Relais und Grenzwerte	Nicht benutzt
6474	Ausgang B	Relais und Grenzwerte	Nicht benutzt

Parameter	Text	Bereich	Werkseinstellung
6475	Aktivieren	EIN AUS	AUS
6476	Fehlerklasse	Fehlerklassen	Warnung

5.10 Pumpenlogik

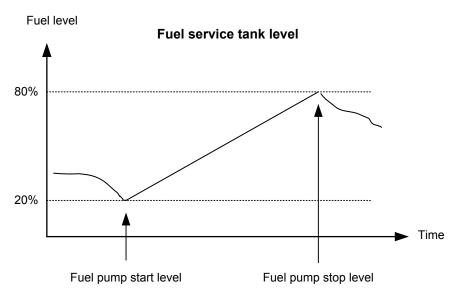
5.10.1 Füllpumpenlogik

Die Kraftstoffpumpenlogik dient zum Starten und Stoppen der Kraftstoffpumpe, um den Kraftstoff im Tank auf dem erforderlichen Niveau zu halten. Der Kraftstoffstand wird über einen der drei Multi-Eingänge erfasst.

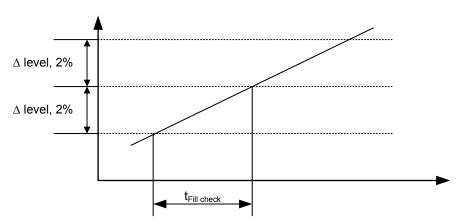
Parameter

Parameter	Name	Bereich	Werkseinstellung	Angaben
6551	Startwert	0 bis 100 % 1 bis 10 s	20% 1 s	Startpunkt der Kraftstofftransferpumpe.
6552	Stoppwert	0 bis 100 %	80%	Stopppunkt der Kraftstofftransferpumpe.
6553	Kraftstofffüllüberwachung	0,1 bis 999,9 s Fehlerklassen	60 s Warnung	Kraftstofftransferpumpe, Alarm-Timer und Ausfallklasse. Der Alarm wird ausgelöst, wenn das Kraftstoffpumpenrelais aktiviert wird, der Kraftstoffstand aber innerhalb der Verzögerungszeit nicht um 2 % ansteigt.
6554	Kraftstoffpumpenlogik, Eingang	Multi-Eingang [102/105/108], Ext. Ana. In [1 bis 8], Automatische Erkennung	Automatische Erkennung	Der Multi-Eingang oder der externe Analogeingang für den Kraftstoffstandssensor. Konfigurieren Sie den Eingang in der Utility Software unter E/A & Hardware-Setup Wählen Sie den Multi-Eingang aus, wenn 4-20 mA verwendet wird. Wählen Sie Automatische Erkennung, wenn ein Multi-Eingang mit RMI-Kraftstoffstand verwendet wird.
6557	Füllgeschwindigkeit	1 bis 10 %	2%	Prozentsatz der Kraftstoff-Füllkurve:

Relaisausgang


Wählen Sie in der Utility-Software unter *E/A & Hardware-Setup* das Ausgangsrelais zur Steuerung der Kraftstoffpumpe, wie im folgenden Beispiel gezeigt. Wenn Sie nicht wollen, dass bei jeder Aktivierung des Ausgangs ein Alarm ausgelöst wird, konfigurieren Sie das Ausgangsrelais als Grenzwertrelais.

Die Steuerung aktiviert das Relais, wenn der Kraftstoffstand unter der Startgrenze liegt. Die Steuerung schaltet das Relais ab, wenn der Kraftstoffstand über dem Grenzwert liegt.


Funktionsweise

Das folgende Diagramm zeigt, wie die Kraftstoffpumpe bei einem Kraftstoffstand von 20 % gestartet und bei einem Stand von 80 % wieder gestoppt wird.

Kraftstofffüllüberwachung

Läuft die Kraftstoffpumpe, muss der Kraftstoffstand um mindestens 2 % innerhalb der in Menü 6553 Kraftstoff-Füllüberwachung eingestellten Zeit steigen. Wenn der Kraftstoffstand nicht um 2 % ansteigt, deaktiviert die Steuerung das Kraftstoffpumpenrelais und aktiviert einen Kraftstoff-Füllalarm.

Die Erhöhung des Niveaus ist auf 2 % festgelegt und kann nicht geändert werden.

Füllstand und Volumen des Kraftstofftanks

Sie können die Kapazität des Tagestanks in Parameter 6911 einstellen. Die Steuerung verwendet diesen Wert und den Füllstand, um die Kraftstoffmenge zu berechnen. Die Kraftstoffmenge wird in der Utility-Software unter Anwendungsüberwachung, Aggregatdaten, Allgemein angezeigt.

5.10.2 DEF-Pumpenlogik

Die Logik der DEF-Pumpe kann die DEF-Pumpe starten und stoppen, um die DEF auf dem erforderlichen Niveau zu halten. Für diese Funktion muss die Motorschnittstellenkommunikation (MK) den DEF-Wert liefern. Wenn die MK den DEF-Füllstand nicht liefern kann, können Sie stattdessen die allgemeine Flüssigkeitspumpenlogik verwenden.

Parameter

Parameter	Name	Bereich	Werkseinstellung	Angaben
6721	DEF-Pumpenlogik Start	0 bis 100 % 1 bis 10 s	20% 1 s	Startpunkt der DEF-Transferpumpe
6722	DEF-Pumpenlogik Stopp	0 bis 100 %	80%	Stopppunkt der DEF-Transferpumpe
6723	DEF-Füllcheck	0,1 bis 999,9 s Fehlerklassen		DEF-Transferpumpe, Alarm-Timer und Ausfallklasse. Der Alarm wird ausgelöst, wenn das DEF- Pumpenrelais aktiviert wird, der DEF-Füllstand aber nicht innerhalb der Verzögerungszeit um die DEF- Füllkurve (siehe 6724) ansteigt.
6724	DEF, Füllkurve	1 bis 10 %	2%	Wenn das DEF-Pumpenrelais aktiviert wird, ist dies der Betrag, um den der DEF-Füllstand innerhalb der in 6723 festgelegten Zeit ansteigen muss.

Relaisausgang

Wählen Sie in der Utility-Software unter *E/A & Hardware-Setup* das Ausgangsrelais zur Steuerung der DEF-Pumpe, wie im folgenden Beispiel gezeigt. Wenn Sie nicht wollen, dass bei jeder Aktivierung des Ausgangs ein Alarm ausgelöst wird, konfigurieren Sie das Ausgangsrelais als Grenzwertrelais.

	<u>Function</u>	Alarm	
	Output Function	Alarm function	Delay
Output 5	DEF tank output ▼	M-Logic / Limit relay ▼	0

Die Steuerung aktiviert das Relais, wenn der DEF-Füllstand unter der Startgrenze liegt. Die Steuerung schaltet das Relais ab, wenn der DEF-Füllstand über der Stoppgrenze liegt.

ANMERKUNG Das Relais der DEF-Pumpe kann mit M-Logic aktiviert werden (Ausgang > Befehl > DEF-Pumpe aktivieren).

5.10.3 Allgemeine Pumpenlogik

Die Logik der Flüssigkeitspumpe kann eine Pumpe starten und stoppen, um die Flüssigkeit auf dem erforderlichen Niveau zu halten.

Parameter

Parameter	Name	Bereich	Werkseinstellung	Angaben
6731	Start der Flüssigkeitspumpe	0 bis 100 % 1 bis 10 s	20% 1 s	Startpunkt der Flüssigkeitstransferpumpe.
6732	Stopp der Flüssigkeitspumpe	0 bis 100 %	80%	Stopppunkt der Flüssigkeitstransferpumpe.
6733	Flüssigkeitskontrolle	0,1 bis 999,9 s Fehlerklassen	60 s Warnung	Flüssigkeitstransferpumpe, Alarm-Timer und Ausfallklasse. Der Alarm wird ausgelöst, wenn das Flüssigkeitspumpenrelais aktiviert wird, der Flüssigkeitsstand aber nicht innerhalb der Verzögerungszeit um die Füllkurve der Flüssigkeit (siehe 6735) ansteigt.

Parameter	Name	Bereich	Werkseinstellung	Angaben
6734	Flüssigkeitspumpenlogik	Multi-Eingang [102/105/108], Ext. Ana. In [1 bis 8]	Multi-Eingang 102	Wählen Sie den Analogeingang für den Flüssigkeitsstand. Konfigurieren Sie den Eingang in der Utility Software unter E/A & Hardware-Setup
6735	Flüssigkeit, Füllkurve	1 bis 10 %	2%	Wenn das Relais der Flüssigkeitspumpe aktiviert wird, ist dies der Betrag, um den der Flüssigkeitsstand in der in 6733 festgelegten Zeit ansteigen muss.

Relaisausgang

Wählen Sie in der Utility-Software unter *E/A & Hardware-Setup* das Ausgangsrelais zur Steuerung der Flüssigkeitspumpe, wie im folgenden Beispiel gezeigt. Wenn Sie nicht wollen, dass bei jeder Aktivierung des Ausgangs ein Alarm ausgelöst wird, konfigurieren Sie das Ausgangsrelais als Grenzwertrelais.

Die Steuerung aktiviert das Relais, wenn der Flüssigkeitsstand unter der Startgrenze liegt. Die Steuerung schaltet das Relais ab, wenn der Flüssigkeitsstand über dem Grenzwert liegt.

ANMERKUNG Das Relais der Flüssigkeitspumpe kann mit M-Logic aktiviert werden (Ausgang > Befehl > Allgemeine Pumpe aktivieren).

5.11 SDU 104-Integration

Die SDU 104 ist eine parallele Redundanzabschalteinheit für den Schutz von Schiffsmotoren. Sie können die SDU 104 zusammen mit der Motorantriebssteuerung AGC 150 Maritim und der Generatorsteuerung AGC 150 Maritim verwenden.

Konfiguration der Generatorsteuerung AGC 150 Maritim für Verwendung mit der SDU 104

- 1. Wählen Sie das Tab E/A & Hardware-Setup.
- 2. Wählen Sie das Tab DI 39-40-41.
- 3. Konfigurieren Sie die Digitaleingänge:
 - Digitaleingang 39 SDU-Kommunikationsfehler
 - · Digitaleingang 40 SDU-Status in Ordnung
 - · Digitaleingang 41 SDU-Warnung
- 4. Wählen Sie das Tab DO 5 18.
- 5. Konfigurieren Sie Ausgang 13 und Ausgang 14:
 - · Ausgang 13: SDU-Watchdog
 - Ausgang 14: SDU-Fehlerrückstellung
- 6. Wählen Sie das Tab *Parameter*, um die SDU-Parameter 18000, 18010 und 18020 zu konfigurieren. Diese Parameter sind die Alarme für die Digitaleingänge.

Die Konfiguration von Digitalausgang 11 ist standardmäßig *Status OK*. Der Ausgang muss konfiguriert sein, damit der SDU-Watchdog-Ausgang funktioniert.

Zusätzliche Informationen

Informationen zum Anschluss der SDU 104 an die Generatorsteuerung AGC 150 Maritim finden Sie in der **Installationsanleitung der SDU 104**. Sie können auch sehen, wie Sie die SDU 104 konfigurieren.

5.12 Weitere Funktionen

5.12.1 Wartungstimer

Die Steuerung verfügt über zwei Wartungstimer zur Überwachung der Wartungsintervalle. Klicken Sie in der Utility-

Software auf das Symbol , um die Wartungstimer aufzurufen.

Die Timer-Funktion basiert auf den Betriebsstunden des Aggregates. Wenn die eingestellte Zeit abgelaufen ist, zeigt die Steuerung einen Alarm an. Die Betriebsstunden werden gezählt, wenn eine Motor-läuft-Rückmeldung vorliegt. Ein Alarm wird ausgelöst, wenn die Betriebsstunden oder Tage abgelaufen sind.

Die Steuerung merkt sich die letzte Rückstellung bei jedem Wartungstimer.

Motor > Wartung > Wartungstimer [1 bis 2]

Parameter	Text	Bereich	Werkseinstellung
6111 oder 6121	Aktivieren	AUS EIN	AUS
6112 oder 6122	Betriebsstunden	0 bis 9000 Stunden	500 Stunden
6113 oder 6123	Tage	1 bis 1000 Tage	365 Tage
6114 oder 6124	Fehlerklasse	Fehlerklassen	Warnung
6115 oder 6125	Ausgang A	Relais und M-Logik	Nicht benutzt
6116 oder 6126	Rückstellung	AUS EIN	AUS

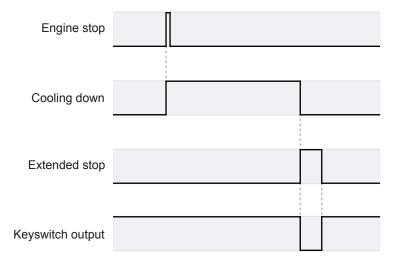
5.12.2 Schlüsselschalter

Ausgangsfunktion

Unter E/A & Hardware-Einstellung, DO konfigurieren Sie die Funktion Schlüsselschalter.

Verdrahtung

Verdrahten Sie den Ausgang des Relais des Schlüsselschalters mit der Stromversorgung des Steuergeräts. Wenn das Relais des Schlüsselschalters offen ist, hat das Steuergerät keinen Strom.


Funktionsweise

In den ersten 5 Sekunden nach dem Einschalten der AGC-Steuerung ist das Relais des Schlüsselschalters geöffnet.

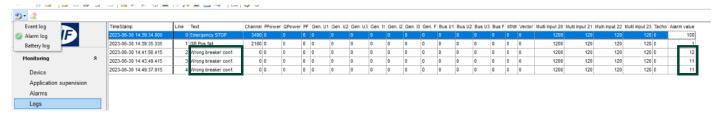
Wenn das Relais des Schlüsselschalters geöffnet ist, sperrt die AGC den Kommunikationsfehleralarm der Motorschnittstelle.

Die Funktion des Schlüsselschalters läuft wie folgt:

- 1. Es gibt einen Motorstopp-Befehl.
- 2. Der Timer Nachlauf (Parameter 6211) startet.
- 3. Wenn der Timer für den Nachlauf abgelaufen ist, startet die AGC den Timer *Erweiterte Stoppzeit* } (Parameter 6212) und öffnet das Relais des Schlüsselschalters.
- 4. Das Relais des Schlüsselschalters bleibt geöffnet, bis der Timer für die erweiterte Stoppzeit abgelaufen ist

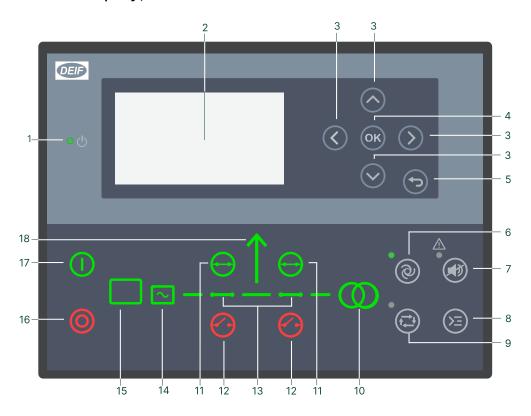
ANMERKUNG Für die Funktion des Schlüsselschalters ist keine Motorkommunikation erforderlich.

5.12.3 Keine Drehzahlregelung


Die AGC 150 Steuerung für den Inselbetrieb kontrolliert nicht den Motorregler. Die Steuerung unterstützt jedoch weiterhin die Leerlauffunktion.

5.12.4 Nicht unterstützte Anwendung

Die Steuerung AGC 150 für den Inselbetrieb unterliegt Konfigurationsbeschränkungen. Wenn eine Konfigurationsregel verletzt wird, aktiviert die Steuerung den Alarm *Nicht unterstützte Anwendung* oder *Falsche Schalterkonfiguration*. Der Alarmwert zeigt an, welche Regel verletzt wurde. Sie können den Alarmwert im Alarmprotokoll in der Utility-Software sehen.


Alarmwert	Konfigurationsregel	
7	Unbekannter Anwendungstyp	
11	Einzelne Steuerung in einer AMF-Anwendung ohne Generatorschalter.	
12	Für Anwendungen mit einer Steuerung und einem externen Generatorschalter müssen beide Rückmeldungen konfiguriert werden.	
13	Bei Anwendungen mit einer Steuerung und einem externen Netzschalter müssen beide Rückmeldungen konfiguriert werden.	

Beispiel für ein Alarmprotokoll

6. Generatorfunktionen

6.1 Display, Tasten und LEDs

Nr.	Name	Funktion	
1	Leistung	Grün: Die Stromversorgung der Steuerung ist eingeschaltet. AUS: Die Stromversorgung der Steuerung ist ausgeschaltet.	
2	Anzeigebildschir m	Auflösung: 240 x 128 px. Sichtbereich: 88,50 x 51,40 mm. Sechs Zeilen mit je 25 Zeichen.	
3	Navigation	Bewegen Sie den Auswahlzeiger auf dem Bildschirm nach oben, unten, links und rechts.	
4	ок	Gehen Sie in das Menüsystem. Bestätigen Sie die Auswahl auf dem Bildschirm.	
5	Zurück	Kehren Sie zur vorherigen Seite zurück.	
6	Betriebsart AUTO	Die Steuerung startet und stoppt das Aggregat automatisch (und verbindet oder trennt es). Es sind keine Bedienhandlungen erforderlich. Die Steuerung öffnet und schließt auch automatisch den Netzschalter (offene Übergänge, da keine Synchronisation erfolgt).	
7	Stummschalten der Hupe	Schaltet eine Alarmhupe aus (falls konfiguriert) und geht in das Alarmmenü.	
8	Schnellzugriffsme nü	Zugang zu Sprungmenü, Modusauswahl, Test und Lampentest	
9	Betriebsart SEMI- AUTO	Die Steuerung kann das Aggregat nicht automatisch starten, stoppen, verbinden oder trennen oder den Netzschalter öffnen und schließen. Der Bediener oder ein externes Signal kann das Aggregat starten, stoppen, verbinden oder trennen oder den Netzschalter öffnen oder schließen.	
10	Netzsymbol	Grün: Netzspannung und -frequenz sind in Ordnung. Die Steuerung kann den Schalter schließen. Rot: Netzfehler.	

Nr.	Name	Funktion	
11	Schalter schließen	Drücken, um den Schalter zu schließen.	
12	Schalter öffnen	Drücken, um den Schalter zu öffnen.	
13	Schaltersymbole	Grün: Schalter ist geschlossen. Rot: Schalterfehler.	
14	Generator	Grün: Generatorspannung und -frequenz sind in Ordnung. Die Steuerung kann den Schalter schließen. Grün (blinkend): Die Generatorspannung und -frequenz sind in Ordnung, aber der V&Hz OK-Timer läuft noch. Die Steuerung kann den Schalter nicht schließen. Rot: Die Generatorspannung ist zu niedrig zum Messen.	
15	Motor	Grün: Es gibt eine "Motor-läuft"-Rückmeldung. Grün (blinkend): Der Motor macht sich betriebsbereit. Rot: Der Motor läuft nicht oder es gibt keine "Motor-läuft"-Rückmeldung.	
16	Stopp	Stoppt das Aggregat bei Auswahl von SEMI-AUTO oder MANUELL.	
17	Start	Startet das Aggregat bei Auswahl von SEMI-AUTO oder MANUELL.	
18	Lastsymbol Grün: Die Versorgungsspannung und -frequenz sind in Ordnung. Rot: Versorgungsspannung/Frequenzausfall.		

6.2 Anwendungsarten

Die Steuerung kann für die folgenden Standard-Betriebsarten eingesetzt werden:

Aggregatbetriebsart	AUTO	SEMI-AUTO	Test	Manuell	Blockieren
Inselbetrieb	•	•	•	•	•
Notstrombetrieb	•	•	•	•	•

6.3 Generatorschalter

6.3.1 Schaltereinstellungen

Leistungsschalter > Generatorschalter > Schalterkonfiguration

Parameter	Text	Bereich	Werkseinstellung
6231	GS-Schließverzögerung	0,0 bis 30,0 s	2,0 s
6232	Ladezeit	0,0 bis 30,0 s	0,0 s
6234	GLS - Versuche erneuter Schließung	Keine Versuche erneuter Schließung 1 Versuch erneuter Schließung 2 Versuch erneuter Schließung 3 Versuch erneuter Schließung	Keine Versuche erneuter Schließung

6.3.2 Schaltersequenzen

Die Schaltersequenzen werden entsprechend der gewählten Betriebsart aktiviert.

Betriebsarten der Steuerung

Betriebsart der Steuerung	Betriebsart der Anlage	Schaltersteuerung
AUTO	Alle	Kontrolliert von der Steuerung
SEMI-AUTO	Alle	Taste / Fernbefehl

Betriebsart der Steuerung	Betriebsart der Anlage	Schaltersteuerung
Manuell	Alle	Taste / Fernbefehl
Blockieren	Alle	Keine (nur Öffnen von Schaltern möglich)

Spannung und Frequenz OK

Vor dem Schließen der Schalter müssen sich Spannung und Frequenz innerhalb eines definierten Zeitrahmens stabilisieren.

Generator > AC-Konfiguration > Spannung und Frequenz OK > Hz/V OK

Parameter	Text	Bereich	Werkseinstellung
6221	Hz/V OK Timer	0,0 bis 99,0 s	5,0 s

${\tt Generator} \, > \, {\tt AC-Konfiguration} \, > \, {\tt Spannung} \, \, {\tt und} \, \, {\tt Frequenz} \, \, \, {\tt OK} \, > \, {\tt Stromausfall/} \, \, {\tt Hz/V} \, \, {\tt OK*} \, \\$

Parameter	Text	Bereich	Werkseinstellung
2111	Blackout dfMin	0,0 bis 5,0 Hz	3,0 Hz
2112	Blackout dfMax	0,0 bis 5,0 Hz	3,0 Hz
2113	Blackout dUMin	2 bis 20 %	5%
2114	Blackout dUMax	2 bis 20 %	5%

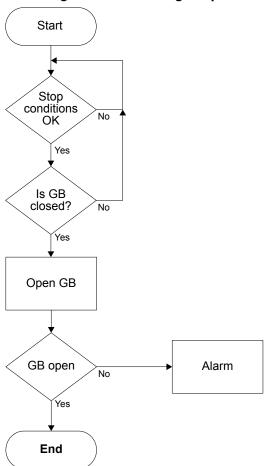
ANMERKUNG Die Einstellungen werden sowohl für Hz/V OK als auch für Blackout verwendet.

Generator > AC-Konfiguration > Spannung und Frequenz OK > Hz/V-Fehler

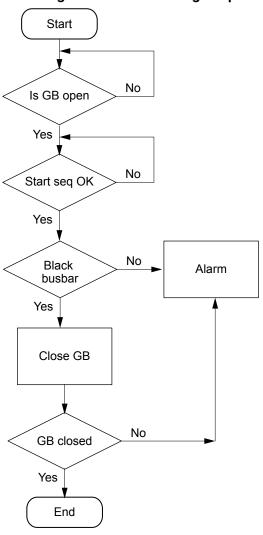
Parameter	Text	Bereich	Werkseinstellung
4561	Timer	1,0 bis 99,0 s	30,0 s
4562	Ausgang A	Relais und M-Logik	Nicht benutzt
4563	Ausgang B	Relais und M-Logik	Nicht benutzt
4564	Aktivieren	AUS EIN	AUS
4565	Fehlerklasse	Fehlerklassen	Abstellung

Generator > AC-Konfiguration > Spannung und Frequenz OK > Hz/V OK

Parameter	Text	Bereich	Werkseinstellung
6221	Hz/V OK Timer	0,0 bis 99,0 s	5,0 s


Schaltbedingungen

Die Schaltersequenzen hängen von den Schalterpositionen und den Frequenz-/Spannungsmessungen ab.


Sequenz	Bedingung
GS EIN, direktes Schließen	Rückmeldung "Motor läuft" Gen. f/U i.O. NS offen
GS AUS, direkte Öffnung	NS offen

6.3.3 Flussdiagramme

Flussdiagramm Gs Öffnungssequenz

Flussdiagramm Gs Schließungssequenz

6.3.4 Schalterfehler

Leistungsschalter > Generatorschalter > Schalterüberwachung > GS-Öffnungsfehler

Parameter	Text	Bereich	Werkseinstellung
2161	Timer	1,0 bis 10,0 s	2,0 s
2162	Ausgang A	Relais und M-Logik	Nicht benutzt
2163	Ausgang B	Relais und M-Logik	Nicht benutzt
2164	Aktivieren	EIN	EIN
2165	Fehlerklasse	Fehlerklassen	Warnung

Leistungsschalter > Generatorschalter > Schalterüberwachung > GS-Schließfehler

Parameter	Text	Bereich	Werkseinstellung
2171	Timer	1,0 bis 10,0 s	900 s
2172	Ausgang A	Relais und M-Logik	Nicht benutzt
2173	Ausgang B	Relais und M-Logik	Nicht benutzt
2174	Aktivieren	EIN	EIN
2175	Fehlerklasse	Fehlerklassen	Warnung

Leistungsschalter > Generatorschalter > Schalterüberwachung > GS-Positionsfehler

Parameter	Text	Bereich	Werkseinstellung
2181	Timer	1,0 bis 5,0 s	1,0 s
2182	Ausgang A	Relais und M-Logik	Nicht benutzt
2183	Ausgang B	Relais und M-Logik	Nicht benutzt
2184	Aktivieren	EIN	EIN
2185	Fehlerklasse	Fehlerklassen	Warnung

6.4 Eingänge und Ausgänge

6.4.1 Digitaleingangsfunktionen

Werkseinstellung

Funktion	Angaben	Betrie bsart AUTO	Betrie bsart SEMI- AUTO	Betrie	Betrie bsart MAN UELL	Betrie bsart BLOC KIERE N	Тур*
Auto-Start/ Stopp	Das Aggregat startet, wenn dieser Eingang aktiviert wird. Das Aggregat stoppt, wenn der Eingang deaktiviert wird. Der Eingang kann verwendet werden, wenn sich die Steuerung im Inselbetrieb befindet und die Betriebsart AUTO angewählt ist.	•					С
Gs Position EIN	Dieser Eingang meldet die Generatorschalterstellung. Die Steuerung benötigt diese Rückmeldung, wenn der Schalter geschlossen ist oder ein Positionsfehleralarm auftritt.	•	•	•	•	•	С
Gs Position AUS	Dieser Eingang meldet die Generatorschalterstellung. Die Steuerung benötigt diese Rückmeldung, wenn der Schalter geöffnet wird oder ein Positionsfehleralarm auftritt.	•	•	•	•	•	С

Konfigurierbar

Funktion	Angaben	Betrie bsart AUTO	Betrie bsart SEMI- AUTO	Betrie bsart TEST	Betrie bsart MAN UELL	Betrie bsart BLOC KIERE N	Тур*
Startfreigabe	Dieser Eingang ist zu aktivieren, damit der Motor gestartet werden kann. Wenn das Aggregat einmal läuft, kann der Eingang wieder deaktiviert werden.	•	•	•	•		С
Fernstart	Dieser Eingang leitet die Startsequenz des Aggregats ein, wenn die Betriebsart SEMI-AUTO oder MANUELL gewählt ist.		•		•		С
Fernstopp	Dieser Eingang leitet die Stoppsequenz des Aggregats ein, wenn die Betriebsart SEMI-AUTO oder MANUELL gewählt ist. Das Aggregat wird ohne Nachlaufzeit stillgesetzt.		•		•		С
Alternativer Start	Dieser Eingang wird verwendet, um einen Stromausfall zu simulieren und auf diese Weise eine vollständige Notstromsequenz auszuführen, ohne dass tatsächlich ein Netzausfall vorliegt.	•	•	•	•	•	С
Anlasser ausrücken	Die Startsequenz ist deaktiviert. Das bedeutet, dass das Startrelais deaktiviert wird und der Anlassermotor ausrückt.	•	•	•	•		С

Funktion	Angaben	Betrie bsart AUTO	Betrie bsart SEMI- AUTO	Betrie bsart TEST	Betrie bsart MAN UELL	Betrie bsart BLOC KIERE N	Тур*
Binäres Signal "Motor-läuft"	Dieser Eingang dient als Betriebsanzeige für den Motor. Ist der Eingang aktiviert, wird das Startrelais deaktiviert.	•	•	•	•	•	С
Öldruckalarm	Der Öldruckalarm wird aktiviert, wenn der Öldruck den Sollwert übersteigt. Bei dieser Funktion wird als Unterdrückung automatisch Status "Motor läuft nicht", als Alarmeingang Niedrig und als Fehlerklasse Abstellung eingestellt.	•	•	•	•	•	С
Wassertempe raturalarm	Der Wassertemperaturalarm wird aktiviert, wenn die Wassertemperatur den Sollwert übersteigt. Bei dieser Funktion wird als Unterdrückung automatisch Abstellüberbrückung, als Alarmeingang Niedrig und als Fehlerklasse Abstellung eingestellt.	•	•	•	•	•	С
GS- Schließung unterdrücken	Ist dieser Eingang aktiv, kann der Generatorschalter nicht geschlossen werden.	•	•	•	•	•	С
NS- Schließung unterdrücken	Ist dieser Eingang aktiv, kann der Schalter nicht geschlossen werden.	•	•	•	•	•	С
GETRENNTER Gs	Der Schalter wird als getrennt ("racked out") betrachtet, wenn die Voraussetzungen erfüllt sind und dieser Eingang aktiviert ist.		•		•		С
NS getrennt	Der Schalter wird als getrennt ("racked out") betrachtet, wenn die Voraussetzungen erfüllt sind und dieser Eingang aktiviert ist.		•		•		С
GS federbelastet	Die Steuerung sendet erst dann ein Schließsignal, wenn diese Rückmeldung eingegangen ist.	•	•	•	•	•	С
NS federbelastet	Die Steuerung sendet erst dann ein Schließsignal, wenn diese Rückmeldung eingegangen ist.	•	•	•	•	•	С
GS AUS und BLOCKIEREN	Der Generatorschalter öffnet sich, und das Aggregat aktiviert die Stoppsequenz. Wenn das Aggregat gestoppt ist, ist es für den Start gesperrt.		•				Р
GS- Schließung auf Schwarz aktivieren	Wenn der Eingang aktiviert ist, kann die Steuerung den Generator auf einer schwarzen Sammelschiene schließen, vorausgesetzt, dass Frequenz und Spannung innerhalb der Grenzwerte in Parameter 2110 liegen.	•	•	•	•	•	С
Betriebsart SEMI-AUTO	Ändert die Betriebsart auf SEMI-AUTO.	•		•	•	•	Р
Betriebsart TEST	Ändert die Betriebsart auf TEST.	•	•		•	•	Р
Betriebsart AUTO	Ändert die Betriebsart auf AUTO.		•	•	•	•	Р
Betriebsart MANUELL	Ändert die Betriebsart auf MANUELL.		•	•		•	Р
Betriebsart BLOCKIEREN	Ändert die Betriebsart auf BLOCKIEREN.	•	•	•	•		С

Funktion	Angaben	Betrie bsart AUTO	Betrie bsart SEMI- AUTO	Betrie bsart TEST	Betrie bsart MAN UELL	Betrie bsart BLOC KIERE N	Тур*
Gesamttest	Dieser Eingang wird im Ereignisprotokoll festgehalten, um zu zeigen, dass ein geplanter Netzausfall vorlag.	•	•	•	•	•	С
Notstromüber lagerung	Bei einem Netzausfall aktiviert der Eingang die Betriebsartwechsel-Funktion, und die Steuerung folgt der Notstromsequenz. Bei der Konfiguration des Eingangs wird die Einstellung in Parameter 7081 (Notstromüberlagerung) nicht beachtet.	•	•	•	•	•	С
Entlastung	Ein laufendes Aggregat beginnt, die Leistung herunterzufahren.	•					С
Mains OK - Netz i. O.	Deaktiviert den Netzwiederkehr-Timer. Der Netzschalter kann nur schließen, wenn der Eingang aktiviert ist.	•	•	•	•	•	С
Zugriffssperr e	Wenn Sie den Eingang für die Zugriffssperre aktivieren, werden die Steuertasten des Displays deaktiviert. Es können nur Messwerte, Alarme und Protokolle eingesehen werden.	•	•	•	•	•	С
Quittierung Fernalarm	Alle anstehenden Alarme werden quittiert, die Alarm-LED auf dem Display erlischt.	•	•	•	•	•	С
Abstellüberbr ückung	Dieser Eingang deaktiviert alle Schutzvorrichtungen, mit Ausnahme des Überdrehzahlschutzes, des Nothalteingangs, des schnellen Überstromschutzes und des MK- Überdrehzahlschutzes. In der Stoppsequenz nach Aktivierung dieses Eingangs wird ein spezieller Nachlaufzeits-Timer verwendet. Aktive Alarme für deaktivierte Schutzvorrichtungen werden in der Alarmliste und im Protokoll angezeigt, die Fehlerklasse jedoch bleibt unterdrückt.	•	•	•	•		С
Batterietest	Der Eingang aktiviert den Anlasser ohne das Aggregat zu starten. Wenn die Batterie schwach ist, führt der Test dazu, dass die Batteriespannung stärker als zulässig abfällt, und ein Alarm wird ausgelöst.	•	•				Р
Temperaturst euerung	Dieser Eingang ist Teil der Leerlauffunktion. Das Aggregat startet, wenn der Eingang hoch ist. Ist der Eingang aktiv, startet das Aggregat mit Nenn- oder Leerlaufdrehzahl, abhängig vom Leerlaufdrehzahleingang. Ist der Eingang deaktiviert, wechselt das Aggregat in den Leerlaufmodus (Leerlaufdrehzahl = EIN) oder stoppt (Leerlaufdrehzahl = AUS).	•	•	•			С
Schalttafelfeh ler	Der Eingang stoppt oder blockiert das Aggregat, je nach Betriebsstatus.	•	•	•	•	•	С
Sichere Regeneration ermöglichen	Einzelheiten finden Sie im Handbuch zur CAN-Bus- Motorkommunikation.	•	•	•	•		С
Starttastenakt ivierungssimu lation	Dieser Eingang wird verwendet, um ein Drücken der Starttaste zu simulieren.		•	•	•		Р
Stopptastena ktivierungssi mulation	Dieser Eingang wird verwendet, um ein Drücken der Stopptaste zu simulieren.		•	•	•		Р

Funktion	Angaben	Betrie bsart AUTO	Betrie bsart SEMI- AUTO	Betrie bsart TEST	Betrie bsart MAN UELL	Betrie bsart BLOC KIERE N	Тур*
Aktivierungss imulation GS- Schließtaste	Dieser Eingang wird verwendet, um ein Drücken der Taste zu simulieren, die ein Schließen des Schalters (Generator) bewirkt.		•	•	•		Р
Aktivierungss imulation GS- Öffnungstast e	Dieser Eingang wird verwendet, um ein Drücken der Taste zu simulieren, die ein Öffnen des Schalters (Generator) bewirkt.		•	•	•		Р
Aktivierungss imulation NS- Schließtaste	Dieser Eingang wird verwendet, um ein Drücken der Taste zu simulieren, die ein Schließen des Schalters (Netz) bewirkt.		•	•	•		Р
Aktivierungss imulation NS- Öffnungstast e	Dieser Eingang wird verwendet, um ein Drücken der Taste zu simulieren, die ein Öffnen des Schalters (Netz) bewirkt.		•	•	•		Р
AUTO- Aktivierungss imulation	Dieser Eingang wird verwendet, um ein Drücken der Taste für die Betriebsart AUTO zu simulieren.		•	•	•		Р
MANUELL- Aktivierungss imulation	Dieser Eingang wird verwendet, um ein Drücken der Taste für die Betriebsart MANUELL zu simulieren.		•	•	•		Р
Aktivierungss imulation Alarmlistenta ste	Dieser Eingang wird verwendet, um ein Drücken der Alarmtaste zu simulieren.		•	•	•		Р

ANMERKUNG * C = Dauer, P = Impuls

6.4.2 Funktionen des Relaisausgangs

Funktion	Aktiviert, wenn
Nicht benutzt	Der digitale Ausgang wird nicht benutzt.
Status in Ordnung	Der Status der Steuerung ist in Ordnung.
Hupe	Ein Alarm wird aktiviert und nicht stummgeschaltet.
Startvorbereitung	Die Startsequenz aktiviert die Startvorbereitung.
Anlasser (Starter)	Durch die Startsequenz wird der Anlasser aktiviert.
Betriebsmagnet	Durch die Startsequenz wird der Startmagnet aktiviert.
Stoppmagnet	Durch die Stoppsequenz wird der Stoppmagnet aktiviert.
Doppelstarter	Durch die Startsequenz wird der Doppelstarter aktiviert.
Sirenen	Ein Alarm wird aktiviert und nicht stummgeschaltet.
Schlüsselschalter	Die AGC wird seit 5 Sekunden mit Strom versorgt, und der Timer für erweiterte Stoppzeit läuft nicht.
Ausgang des DEF-Tanks	Dieser Ausgang steuert die DEF-Pumpe. Die Steuerung aktiviert das Relais, wenn der DEF-Füllstand unter der Startgrenze liegt.
Allgemeiner Flüssigkeitsausgang	Dieser Ausgang steuert die Flüssigkeitspumpe. Die Steuerung aktiviert das Relais, wenn der Flüssigkeitsstand unter der Startgrenze liegt.

Funktion	Aktiviert, wenn
Ausgang des Kraftstofftanks	Dieses Relais steuert die Kraftstoffpumpe. Die Steuerung aktiviert das Relais, wenn der Kraftstoffstand unter der Startgrenze liegt.
Betriebsart Semi	Die Betriebsart SEMI-AUTO ist aktiviert.
Betriebsart Automatik	Die Betriebsart AUTO ist aktiviert.
Betriebsart TEST	Testbetrieb ist aktiviert.
Betriebsart BLOCKIEREN	Die Betriebsart Blockieren ist aktiviert.
Betriebsart MANUELL	Die Betriebsart MANUELL ist aktiviert.
SDU-Fehlerrückstellung	Dieser Ausgang aktiviert den Fehlerrückstelleingang auf SDU 104.
SDU-Watchdog	Dieser Ausgang aktiviert den Watchdog-Eingang auf SDU 104.

6.5 Weitere Funktionen

6.5.1 Belastung durch Spitzenströme

Am Display können zwei unterschiedliche Messwerte angezeigt werden:

- 1. I Wärmebelastung zeigt den durchschnittlichen Spitzenstrom eines Zeitintervalls an.
- 2. I Spitzenstrom zeigt den zuletzt aufgetretenen Spitzenstrom an.

I Wärmebelastung

Diese Messung dient zur Simulation eines Bimetallsystems, das speziell zur Anzeige thermischer Belastungen von Kabeln und Transformatoren geeignet ist.

Der berechnete Mittelwert entspricht **nicht** dem durchschnittlichen Strom über die Zeit. Der Wert von I Wärmebelastung ist ein Durchschnittswert des Spitzenstroms im einstellbaren Zeitintervall.

Die gemessenen Spitzenströme werden einmal pro Sekunde erfasst. Alle sechs Sekunden wird ein mittlerer Spitzenwert berechnet. Wenn der Spitzenwert höher ist als der vorherige maximale Spitzenwert, wird er zur Berechnung eines neuen Mittelwerts herangezogen. Der Zeitraum der Wärmebelastung liefert eine exponentielle Wärmecharakteristik.

Das Zeitintervall, in dem der mittlere Spitzenstrom berechnet wird, kann eingestellt oder zurückgesetzt werden. Wird der Wert zurückgesetzt, wird er im Ereignisprotokoll dokumentiert. Die Messwertanzeige am Display wird dann auf 0 zurückgesetzt.

Generator > Stromschutzfunktionen > Spitzen- und Mittelwerte

Parameter	Text	Bereich	Werkseinstellung
6841	Timer	0,0 bis 20,0 min	8,0 min
6842	Rückstellung	AUS EIN	AUS

I Spitzenstrom

Bei Erkennung eines neuen Spitzenstroms wird der Wert im Display angezeigt und alle sechs Sekunden aktualisiert. Wenn der Wert zurückgesetzt wird, wird dieser Vorgang im Ereignisprotokoll dokumentiert.

Generator > Stromschutzfunktionen > Spitzen- und Mittelwerte

Parameter	Text	Bereich	Werkseinstellung
6843	Rückstellung	AUS EIN	AUS

ANMERKUNG Die beiden Zurücksetzungsfunktionen sind auch über M-Logik als Befehle verfügbar.

6.5.2 Keine Spannungsregelung

Die AGC 150-Steuerung für den Inselbetrieb kontrolliert nicht den SP	R des Generators.

7. Netzfunktionen

7.1 Netzschalter

7.1.1 Schaltereinstellungen

Leistungsschalter > Netzschalter > Schalterkonfiguration

Parameter	Text	Bereich	Werkseinstellung
7082	NS-Schließverzögerung	0,0 bis 30,0 s	0,5 s
7085	Ladezeit	0,0 bis 30,0 s	0,0 s

7.1.2 Schaltersequenzen

Sollwerte für Ns-Steuerung

Parameter	Text	Beschreibung
7081	Notstromüberlageru ng	Wenn diese Funktion aktiviert ist, folgt die Steuerung unabhängig von der aktuellen Betriebsart der Anlage bei einem Netzfehler der Notstromsequenz.
7082	NS- Schließverzögerung	Zeit von Gs aus bis zu Ns ein
7085	Ladezeit	Nach dem Öffnen des Schalters wird die Ns-EIN-Sequenz nicht vor Ablauf dieser Verzögerung eingeleitet.

Wenn kein Ns in der Anwendungszeichnung vorhanden ist (siehe *Anwendungskonfiguration* in der Utility-Software), werden die Relais zum Öffnen/Schließen und die Eingänge für Rückmeldungen, die normalerweise für die Ns-Steuerung/ Überwachung verwendet werden, konfigurierbar.

Netzbetrieb > Notstromfunktionen > Notstrom-Timer

Parameter	Text	Bereich	Werkseinstellung
7081	Notstromüberlagerung	Notstromüberl. AUS Notstromüberl. EIN	Notstromüberl. AUS

Leistungsschalter > Netzschalter > Schalterkonfiguration

Parameter	Text	Bereich	Werkseinstellung
7082	NS-Schließverzögerung	0,0 bis 30,0 s	0,5 s
7085	Federspannzeit	0,0 bis 30,0 s	0,0 s

Netzschalter öffnen im Notstromfall

Wenn die Steuerung im Notstrombetrieb arbeitet, muss die Funktionalität der Netzschalteröffnung ausgewählt werden. Dies kann hilfreich sein, wenn der Ns nur mit Spannung am Netz oder an der Sammelschiene betrieben werden kann.

Netz > Notstromfunktionen > Startsequenz im Notstrombetrieb

Parameter	Text	Bereich	Werkseinstellung
7065	Startfehlerbehandlung	Motor starten und Ns öffnen Motor starten Ns öffnen, wenn Motor bereit ist	Motor starten und Ns öffnen

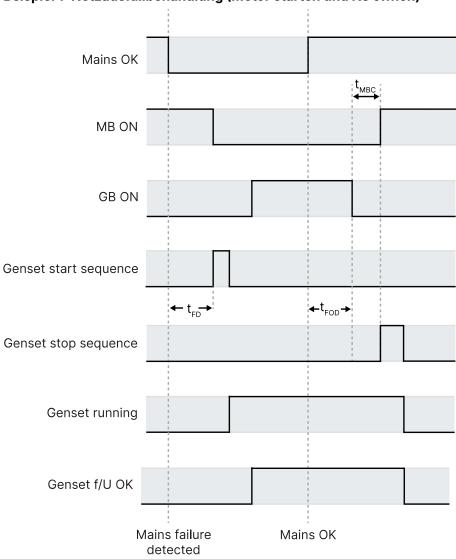
Netzfehlersteuerungssequenzen (Parameter 7065)

Einstellung	Sequenz mit keinem Ausfall	Sequenz mit Startausfall
Motor starten und Ns öffnen	 Der Netzfehler-Verzögerungstimer läuft. Netzschalter öffnet sich. Motoranlauf. Volt/Hz OK Timer läuft. Generatorschalter schließt sich. 	 Der Netzfehler-Verzögerungstimer läuft. Netzschalter öffnet sich. Motor versucht zu starten. Generatorstartfehler.
Motor starten	 Der Netzfehler-Verzögerungstimer läuft. Motoranlauf. Volt/Hz OK Timer läuft. Netzschalter öffnet sich. Generatorschalter schließt sich. 	 Der Netzfehler-Verzögerungstimer läuft. Motor versucht zu starten. Generatorstartfehler. Netzschalter öffnet sich.
Ns öffnen, wenn Motor bereit (nur in Aggregatsteuerung)	 Der Netzfehler-Verzögerungstimer läuft. Motoranlauf. Volt/Hz OK Timer läuft. Netzschalter öffnet sich. Generatorschalter schließt sich. 	 Der Netzfehler-Verzögerungstimer läuft. Motor versucht zu starten. Generatorstartfehler. Netzschalter bleibt geschlossen.

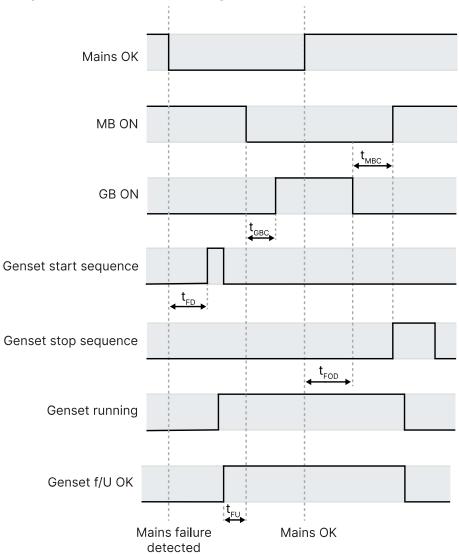
Netzbetrieb > Notstromfunktionen > Notstrom-Timer

Parameter	Text	Bereich	Werkseinstellung
7061	U Netzfehler-Timer	0,5 bis 990,0 s	5,0 s
7062	Netz OK Verzögerung U	2 bis 9900 s	60 s
7071	f Netzfehler-Timer	0,5 bis 990,0 s	5,0 s
7072	Netz OK Verzögerung f	2 bis 9900 s	60 s
7081	Notstromüberlagerung	AUS EIN	AUS

Netz > Spannungs- und Frequenzgrenzen > Spannungseinstellungen


Parameter	Text	Bereich	Werkseinstellung
7066	U Asymmetrie	2 bis 100 %	100%

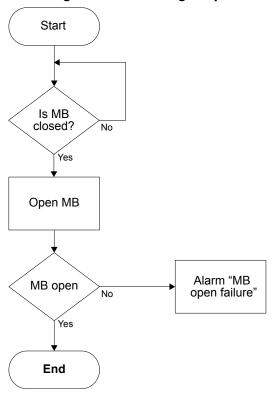
Die Spannungsasymmetrie muss unterhalb des Asymmetriesollwerts liegen, damit die Steuerung die Spannung als korrekt behandeln kann. Je niedriger der Sollwert ist, desto geringer ist die Spannungsasymmetrie, die akzeptiert wird, bevor ein Netzfehler auftritt.


Leistungsschalter > Netzschalter > Schalterkonfiguration

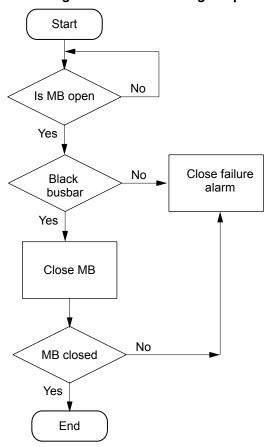
Parameter	Text	Bereich	Werkseinstellung
7082	NS-Schließverzögerung	0,0 bis 30,0 s	0,5 s
7085	Ladezeit*	0,0 bis 30,0 s	0,0 s

Beispiel 1: Netzausfallbehandlung (Motor starten und Ns öffnen)

Beispiel 2: Netzausfallbehandlung (Motor starten)


Schaltbedingungen

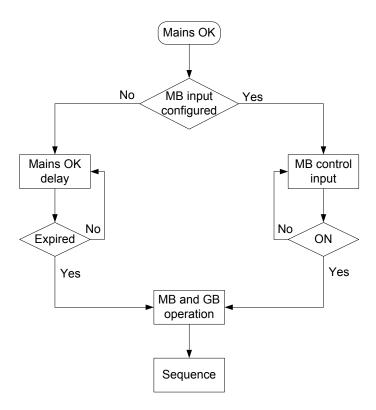
Die Schaltersequenzen hängen von den Schalterpositionen und den Frequenz-/Spannungsmessungen ab.


Sequenz	Bedingung
NS EIN, direktes Schließen	Netz f/U i.O. GS offen
NS AUS, direktes Öffnen	Alarme mit Fehlerklassen: Abschaltung oder Auslösung von NS-Alarm

7.1.3 Flussdiagramme

Flussdiagramm Ns Öffnungssequenz

Flussdiagramm Ns Schließungssequenz



7.1.4 Digitale Netzschaltersteuerung

Die Steuerung führt normalerweise die automatische Notstromsequenz gemäß den Parametern in der Systemeinstellung aus. Neben diesen Parametern ist es möglich, den digitalen Parameter Netz OK so zu konfigurieren, dass er zur Steuerung der Netzrückkehrsequenz verwendet wird. Ein externes Gerät (z. B. eine SPS) oder der Bediener können so entscheiden, wann die Rückschaltsequenz ausgeführt werden soll.

Das nachstehende Diagramm zeigt, dass der Eingang, wenn er konfiguriert ist, durch einen Impuls aktiviert werden muss, um die Netzrückkehrsequenz zu starten. Wenn der Eingang nicht aktiviert ist, wird die Last weiterhin vom Generator versorgt.

Die Netzwiederkehr-Verzögerung wird nicht verwendet, wenn der Eingang Netz OK konfiguriert ist.

7.1.5 Schalterfehler

Leistungsschalter > Netzschalter > Schalterüberwachung > NS-Öffnungsfehler

Parameter	Text	Bereich	Werkseinstellung
2201	Timer	1,0 bis 10,0 s	2,0 s
2202	Ausgang A	Relais und M-Logik	Nicht benutzt
2203	Ausgang B	Relais und M-Logik	Nicht benutzt
2204	Aktivieren	EIN	EIN
2205	Fehlerklasse	Fehlerklassen	Warnung

${\tt Leistungsschalter > Netzschalter > Schalter\"{u}berwachung > NS-Schließfehler}$

Parameter	Text	Bereich	Werkseinstellung
2211	Timer	1,0 bis 5,0 s	2,0 s
2212	Ausgang A	Relais und M-Logik	Nicht benutzt
2213	Ausgang B	Relais und M-Logik	Nicht benutzt

Parameter	Text	Bereich	Werkseinstellung
2214	Aktivieren	EIN	EIN
2215	Fehlerklasse	Fehlerklassen	Warnung

Leistungsschalter > Netzschalter > Schalterüberwachung > NS-Positionsfehler

Parameter	Text	Bereich	Werkseinstellung
2221	Timer	1,0 bis 5,0 s	1,0 s
2222	Ausgang A	Relais und M-Logik	Nicht benutzt
2223	Ausgang B	Relais und M-Logik	Nicht benutzt
2224	Aktivieren	EIN	EIN
2225	Fehlerklasse	Fehlerklassen	Warnung

8. AC-Schutzfunktionen

8.1 Über Schutzfunktionen

8.1.1 Schutzfunktionen im Allgemeinen

Alle Schutzsollwerte sind ein Prozentsatz der Nennwerte.

Für die meisten Schutzfunktionen wird ein Sollwert und eine Zeitverzögerung gewählt. Der Ausgang ist aktiviert, sobald der Timer ausgelaufen ist. Die Betriebszeit ist die eingestellte Verzögerung + die Reaktionszeit

Bei der Einrichtung der Steuerung sind z.B. die Messklasse der Steuerung und ein ausreichender Sicherheitsabstand zu berücksichtigen:

Ein Energieerzeugungssystem darf nicht wieder an ein Netz angeschlossen werden, wenn die Spannung 85 % von U_{NENN} ±0 % oder > 110 % ±0 % beträgt. Um die Wiederverbindung innerhalb dieses Intervalls zu gewährleisten, muss die Toleranz/Genauigkeit der Steuerung berücksichtigt werden. Wenn die Wiedereinschalttoleranz ± 0 % beträgt, stellen Sie die Sollwerte einer Steuerung so ein, dass sie 1–2 % über/unter dem tatsächlichen Sollwert liegen.

Allgemeine Parameterbereiche für Schutzfunktionen

Einstellung	Bereich
Ausgang A	Nicht benutzt
Ausgang B	12 Relais: 5, 6, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18 Externe E/A: Verfügbare Relais in den angeschlossenen CIO(s) Grenzwerte
Aktivieren	AUS EIN
Fehlerklasse	Siehe Steuerungstyp

Unterdrückungsfunktionen

Sie können Unterdrückungsfunktionen nur mit der Utility-Software auswählen. Jeder Alarm hat eine Auswahlliste für die Bedingungen der Unterdrückungsfunktionen. Die Alarmunterdrückung ist aktiv, solange mindestens eine der gewählten Bedingungen aktiv ist.

8.1.2 Phase-Null-Spannungsalarme

Wenn die Spannungsalarme auf Basis von Phase-Neutral-Messungen funktionieren sollen, muss der Spannungserkennungstyp sowohl für den Generator als auch für die Sammelschiene auf Phase-Neutral eingestellt werden.

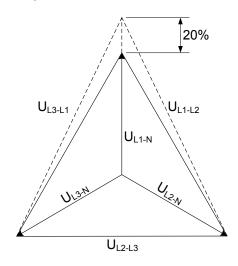
Generator > Spannungsschutzfunktionen > Spannungserkennungstyp

Parameter	Text	Bereich	Werkseinstellung
1201	G U Erkennungsart	Phase-Phase Phase-Null	Phase-Phase

Sammelschiene > Spannungsschutzfunktionen > Spannungserkennungsart

Parameter	Text	Bereich	Werkseinstellung
1202	Ss U Erkennungsart	Phase-Phase Phase-Null	Phase-Phase

Wie im folgenden Vektordiagramm dargestellt, gibt es bei einer Fehlersituation für die Phase-Neutral-Spannung und die Phase-Phase-Spannung eine Differenz der Spannungswerte.


Beispiel: Tatsächliche Messungen bei einer 10 %igen Unterspannung in einem 400/230-Volt-System

	Phase-Null	Phase-Phase
Nennspannung	400/230	400/230
Spannung, Fehler 10 %	380/207	360/185

Der Alarm tritt bei zwei verschiedenen Spannungswerten auf, obwohl der Alarm-Sollwert in beiden Fällen 10 % beträgt.

Das nachstehende 400-V-Wechselstromsystem zeigt, dass sich die Phase-Neutral-Spannung um 20 % ändern muss, wenn sich die Phase-Phase-Spannung um 40 Volt (10 %) ändert.

Beispiel

 $U_{NENN} = 400/230 \text{ V AC}$ Fehlermessungen

- U_{I 1I 2} = 360 V AC
- U_{L3L1} = 360 V AC
- U_{L1-N} = 185 V AC
- ΔU_{PH-N} = 20 %

8.1.3 Phasenfolgefehler und Phasendrehung

Die Steuerung überwacht die Drehung der Spannung und löst einen Alarm aus, wenn sich die Spannung in die falsche Richtung dreht. Die Steuerung kann die Drehung in beide Richtungen überwachen.

Diese Schutzmaßnahmen sind jedoch nicht relevant, da die AGC 150-Steuerung für den Inselbetrieb keine Synchronisierung und Verbindung der Stromquellen vornimmt.

8.2 Generatorschutzvorrichtungen

Die Anzahl der Schutzfunktionen hängt von der jeweiligen Softwareoption ab.

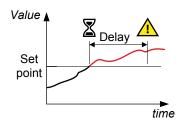
Zusätzliche Informationen

Im **Datenblatt** finden Sie die Schutzfunktionen für jede Softwareoption.

Die *Ansprechzeit* wird in IEC 447-05-05 definiert (von dem Moment, in dem eine Schutzfunktion erkannt wird bis zu dem Moment, in dem der Steuerungsausgang reagiert hat). Für jede Schutzfunktion ist die *Ansprechzeit* für die minimale benutzerdefinierte Zeitverzögerung gegeben.

Generatorschutzvorrichtungen

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit	Alarme
Überspannung	U>, U>>	59	< 200 ms	2
Unterspannung	U<, U<<	27	< 200 ms	3
Spannungsasymmetrie	UUB>	47	< 200 ms*	1
Überstrom	3 >, 3 >>	50TD	< 100 ms	4

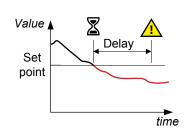

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit	Alarme
Schneller Überstrom (Kurzschluss)	3 >>>	50/50TD	< 50 ms	2
Stromasymmetrie	IUB>	46	< 200 ms*	2
Überfrequenz	f>, f>>	810	< 200 ms	3
Unterfrequenz	f<, f<<	81U	< 200 ms	3
Überlast	P>, P>>	32	< 200 ms	4
Niedrige Leistung	-	_	< 100 ms	1
Rückleistung	P<, P<<	32R	< 200 ms	2
Blindleistungsexport (Übererregung)	Q>, Q>>	400	< 200 ms	1
Blindleistungsimport (Erregungsverlust/ Untererregung)	Q<, Q<<	40U	< 200 ms	1

ANMERKUNG * Diese Ansprechzeiten umfassen die minimale benutzerdefinierte Zeitverzögerung von 100 ms.

8.2.1 Überspannung (ANSI 59)

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Überspannung	U>, U>>	59	< 100 ms

Die Alarmreaktion basiert auf der höchsten Phase-Phase-Spannung oder der höchsten Phase-Neutral-Spannung von der Quelle, wie von der Steuerung gemessen. Die Phase-Phase-Spannung ist der Standard.


Generator > Spannungsschutzfunktionen > Überspannung > G U> [1 oder 2]

Parameter	Text	Bereich	G U> 1	G U> 2
1151 oder 1161	Sollwert	100 bis 130 %	103%	105%
1152 oder 1162	Timer	0,1 bis 100 s	10 s	5 s
1155 oder 1165	Aktivieren	AUS EIN	AUS	AUS
1156 oder 1166	Fehlerklasse	Fehlerklassen	Warnung	Warnung

8.2.2 Unterspannung (ANSI 27)

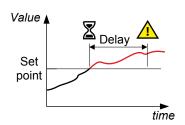
Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Unterspannung	U<, U<<	27	< 100 ms

Die Alarmreaktion basiert auf der niedrigsten Phase-Phase-Spannung oder der niedrigsten Phase-Neutral-Spannung von der Quelle, die von der Steuerung gemessen wird. Die Phase-Phase-Spannung ist der Standard.

Generator > Spannungsschutzfunktionen > Unterspannung > G U< [1 bis 3]

Parameter	Text	Bereich	G U< 1	G U< 2	G U< 3
1171, 1181 oder 1191	Sollwert	40 bis 100 %	97%	95%	95%
1172, 1182 oder 1192	Timer	0,1 bis 100 s	10 s	5 s	5 s
1175, 1185 oder 1195	Aktivieren	AUS EIN	AUS	AUS	AUS
1176, 1186 oder 1196	Fehlerklasse	Fehlerklassen	Warnung	Warnung	Warnung

ANMERKUNG Der Unterspannungsschutz ist gesperrt, wenn sich die Steuerung im Ruhezustand befindet.

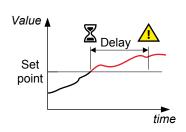

8.2.3 Spannungsasymmetrie (ANSI 47)

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Spannungsungleichgewicht (Spannungsasymmetrie)	UUB>	47	< 200 ms*

ANMERKUNG * Diese Ansprechzeit umfasst die minimale benutzerdefinierte Zeitverzögerung von 100 ms.

Die Alarmreaktion basiert auf der höchsten Differenz zwischen einem der drei Phase-Phase-Spannungswerte oder Phase-Neutral-Effektivwerte und der durchschnittlichen Spannung, wie von der Steuerung gemessen. Die Phase-Phase-Spannung ist der Standard.

Wenn Phase-Phase-Spannungen verwendet werden, berechnet die Steuerung die durchschnittliche Phase-Phase-Spannung. Die Steuerung berechnet dann die Differenz zwischen jeder Phase-Phase-Spannung und der durchschnittlichen Spannung. Schließlich dividiert die Steuerung die maximale Differenz durch die durchschnittliche Spannung, um die Spannungsasymmetrie zu erhalten.


Generator > Spannungsschutzfunktionen > Spannungsasymmetrie > G-Asymmetrie U

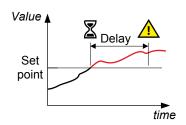
Parameter	Text	Bereich	Werkseinstellung
1511	Sollwert	0 bis 50 %	10%
1512	Timer	0,1 bis 100 s	10 s
1515	Aktivieren	AUS EIN	AUS
1516	Fehlerklasse	Fehlerklassen	Gs-Auslösung

8.2.4 Überstrom (ANSI 50TD)

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Überstrom	3 >, 3 >>	50TD	< 100 ms

Die Alarmreaktion basiert auf den höchsten Phasenstrom-Echt-Effektivwerten der Quelle, wie von der Steuerung gemessen.

Generator > Stromschutzfunktionen > Überstrom > I> [1 bis 4]


Parameter	Text	Bereich	I> 1	I> 2	I> 3	I> 4
1031, 1041, 1051 oder 1061	Sollwert	50 bis 200 %	115%	120%	115%	120%
1032, 1042, 1052 oder 1062	Timer	0,1 bis 3200 s	10 s	5 s	10 s	5 s
1035, 1045, 1055 oder 1065	Aktivieren	AUS EIN	EIN	EIN	EIN	EIN
1036, 1046, 1056 oder 1066	Fehlerklasse	Fehlerklassen	Warnung	Gs- Auslösung	Gs- Auslösung	Gs- Auslösung

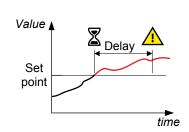
8.2.5 Schneller Überstrom (ANSI 50/50TD)

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Schneller Überstrom	3l>>>	50/50TD*	< 50 ms

ANMERKUNG * ANSI 50 gilt, wenn der Parameter Verzögerung 0 s beträgt.

Die Alarmreaktion basiert auf den höchsten Phasenstrom-Echt-Effektivwerten der Quelle, wie von der Steuerung gemessen.

Generator > Stromschutzfunktionen > Schneller Überstrom > I>> [1 oder 2]


Parameter	Text	Bereich	l>> 1	l>> 2
1131 oder 1141	Sollwert	150 bis 300 %	150%	200%
1132 oder 1142	Timer	0 bis 3200 s	2 s	0,5 s
1135 oder 1145	Aktivieren	AUS EIN	AUS	AUS
1136 oder 1146	Fehlerklasse	Fehlerklassen	Gs-Auslösung	Gs-Auslösung

8.2.6 Stromasymmetrie (ANSI 46)

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Stromasymmetrie	IUB>	46	< 200 ms*

ANMERKUNG * Diese Ansprechzeit umfasst die minimale benutzerdefinierte Zeitverzögerung von 100 ms.

Die Alarmreaktion basiert auf der höchsten Differenz zwischen einem der drei Phasenstrom-Echteffektivwerte, wie von der Steuerung gemessen. Sie können entweder die *Durchschnittsmethode (ANSI)* oder die *Nennwertmethode* zur Berechnung der Stromasymmetrie wählen.

Generator > Stromschutzfunktionen > Stromasymmetrie > Asymmetrie I [1 oder 2]

Parameter	Text	Bereich	Asymmetrie I 1	Asymmetrie I 2
1501 oder 1711	Sollwert	0 bis 100 %	30%	40%
1502 oder 1712	Timer	0,1 bis 100 s	10 s	10 s
1505 oder 1715	Aktivieren	AUS EIN	AUS	AUS
1506 oder 1716	Fehlerklasse	Fehlerklassen	Gs-Auslösung	Gs-Auslösung

Generator > Stromschutzfunktionen > Stromasymmetrie > Typ

Parameter	Text	Bereich	Werkseinstellung
1203	Тур	Nennwert Durchschnitt	Nennwert

ANMERKUNG Die *Durchschnittsmethode* ist bei niedrigen Lasten sehr empfindlich.

Die Durchschnittsmethode verwendet die ANSI-Standardberechnungsmethode zur Bestimmung der Stromasymmetrie. Die Steuerung berechnet den durchschnittlichen Strom für die drei Phasen. Die Steuerung berechnet dann die Differenz zwischen jedem Phasenstrom und dem Durchschnittsstrom. Schließlich dividiert die Steuerung die maximale Differenz durch den durchschnittlichen Strom, um die Stromasymmetrie zu erhalten.

Beispiel für die Durchschnittsmethode

Die Steuerung steuert ein Aggregat mit einem Nennstrom von 100 A. Der L1-Strom ist 80 A, der L2-Strom ist 90 A und der L3-Strom ist 60 A.

Der Durchschnittsstrom beträgt 76,7 A. Die Differenz zwischen dem Phasenstrom und dem Durchschnitt beträgt 3,3 A für L1, 13,3 A für L2 und 16,7 A für L3.

Die Stromasymmetrie beträgt also 16,7 A / 76,7 A = 0,22 = 22 %.

Bei der Nennwertmethode berechnet die Steuerung die Differenz zwischen der Phase mit dem höchsten Strom und der Phase mit dem niedrigsten Strom. Schließlich dividiert die Steuerung die Differenz durch den Nennstrom, um die Stromasymmetrie zu erhalten.

Beispiel für die Nennwertmethode

Die Steuerung steuert ein Aggregat mit einem Nennstrom von 100 A. Der L1-Strom ist 80 A, der L2-Strom ist 90 A und der L3-Strom ist 60 A.

Die Stromasymmetrie beträgt (90 A - 60 A) / 100 A = 0.3 = 30 %.

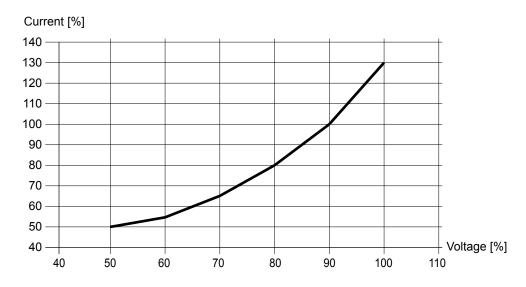
8.2.7 Spannungsabhängiger Überstrom (ANSI 50V)

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Spannungsabhängiger Überstrom	lv>	50V	-

Dies ist ein spannungsabhängiger Überstromalarm für Generatoren ohne Permanentmagneten. Der Schutz wirkt, wenn es zu einem Kurzschluss kommt und die Spannung abfällt. Der Strom steigt kurz an, bevor er auf ein niedrigeres Niveau fällt.

Die Höhe des Kurzschlussstroms kann unter den Nennstrom des Generators sinken, so dass der Kurzschluss nicht ausgelöst wird, wenn ein Standard-ANSI 50/50TD verwendet wird. Wenn der Kurzschluss vorhanden ist, ist die Spannung niedrig. Dies kann für die Auslösung bei niedrigerem Strom verwendet werden, wenn die Spannung niedrig ist.

Generator > Stromschutzfunktionen > Spannungsabhängiger Überstrom


Parameter	Text	Bereich	Werkseinstellung
1101	G Iv> (50 %)	50 bis 200 %	110%
1102	G Iv> (60 %)	50 bis 200 %	125%
1103	G Iv> (70 %)	50 bis 200 %	140%
1104	G Iv> (80 %)	50 bis 200 %	155%
1105	G Iv> (90 %)	50 bis 200 %	170%
1106	G Iv> (100 %)	50 bis 200 %	200%
1110	Fehlerklasse	Fehlerklassen	Gs-Auslösung

Beispiel

Es gibt sechs Sollwerte für Strom- und Spannungsniveaus Die Spannungsniveaus sind bereits festgelegt, daher müssen nur die Stromniveaus eingestellt werden. Alle Werte sind in Prozent der Nenneinstellungen angegeben. Die Standardwerte sind in der nachstehenden Tabelle aufgeführt.

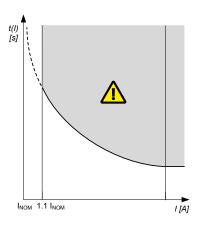
Parameter	Spannungsniveau (nicht einstellbar)	Stromniveau (einstellbar)
1101	50%	50%
1102	60%	55%
1103	70%	65%
1104	80%	80%
1105	90%	100%
1106	100%	130%

Die Sollwerte können in einer Kurve dargestellt werden:

Wenn die Betriebswerte oberhalb der Kurve liegen, wird der Schalter ausgelöst. Der Generatorschalter wird auch ausgelöst, wenn die Generatorspannung unter 50 % und der Strom über 50 % des Nennwerts liegt.

8.2.8 Abhängiger Überstrom, Nullleiter (ANSI 50N)

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Abhängiger Überstrom, Nullleiter		50N	_


Dies ist der Alarm für abhängigen Überstrom für die Nullstrommessung.

Die Alarmreaktion basiert auf dem ungefilterten (außer Anti-Aliasing) Neutralstrom, wie er bei der vierten Strommessung gemessen wird.

Die Alarmreaktionszeit hängt von einem angenäherten Integral der aktuellen Messung über die Zeit ab. Das Integral wird nur aktualisiert, wenn der Messwert oberhalb der Aktivierungsschwelle liegt.

ANMERKUNG

Das Diagramm auf der rechten Seite ist eine vereinfachte Darstellung dieses Alarms. Das Diagramm zeigt nicht das Integral über die Zeit.

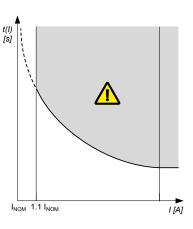
Generator > Stromschutzfunktionen > Abh. Überstr. Neutr.

Parameter	Text	Bereich	Werkseinstellung
1721	Тур	IEC Inverse IEC Very Inverse IEC Extremely Inverse IEEE Moderately Inverse IEEE Very Inverse IEEE Extremely Inverse Auf Kundenwunsch	IEC Inverse
1722	Sollwert	2 bis 120 %	30%
1723	Sollwert TMS	0,01 bis 100,00	1,00
1724	Sollwert k	0,001 bis 32,000 s	0,140 s
1725	Sollwert c	0,000 bis 32,000 s	0,000 s
1726	Sollwert a	0,001 bis 32,000 s	0,020 s
1728	Aktivieren	AUS EIN	AUS
1729	Fehlerklasse	Fehlerklassen	Gs-Auslösung

Zusätzliche Informationen

Siehe **Abhängiger Überstrom (ANSI 51)** für die Berechnungsmethode, die Standardkurven und Informationen über die definitive Zeitcharakteristik.

8.2.9 Abhängiger Überstrom, Erdschluss (ANSI 50G)


Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Abhängiger Überstrom, Erdschluss		50G	_

Dies ist der Alarm für abhängigen Überstrom für die Erdstrommessung.

Die Alarmreaktion basiert auf dem Erdstrom, wie er durch die 4. Strommessung gemessen wird, gefiltert, um die dritte Harmonische zu dämpfen (mindestens 18 dB).

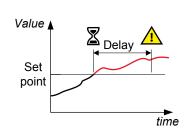
ANMERKUNG

Das Diagramm auf der rechten Seite ist eine vereinfachte Darstellung dieses Alarms. Das Diagramm zeigt nicht das Integral über die Zeit.

Generator > Stromschutzfunktionen > Abh. Überstr., Erdschl.

Parameter	Text	Bereich	Werkseinstellung
1731	Тур	IEC Inverse IEC Very Inverse IEC Extremely Inverse IEEE Moderately Inverse IEEE Very Inverse IEEE Extremely Inverse Auf Kundenwunsch	_
1732	Sollwert	2 bis 120 %	10%
1733	Sollwert TMS	0,01 bis 100,00	1,00
1734	Sollwert k	0,001 bis 32,000 s	0,140 s
1735	Sollwert c	0,000 bis 32,000 s	0,000 s
1736	Sollwert a	0,001 bis 32,000 s	0,020 s
1738	Aktivieren	AUS EIN	AUS
1739	Fehlerklasse	Fehlerklassen	Gs-Auslösung

Zusätzliche Informationen


Siehe **Abhängiger Überstrom (ANSI 51)** für die Berechnungsmethode, die Standardkurven und Informationen über die definitive Zeitcharakteristik.

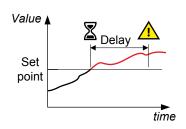
8.2.10 Neutralleiter-Überstrom (4. Stromwandler)

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Neutralleiter-Überstrom (4. Stromwandler)			-

Dies ist der Überstromalarm für die Neutralstrommessung.

Die Alarmreaktion basiert auf dem ungefilterten Neutralstrom (gemessen durch den 4. Stromwandler).

Generator > Stromschutzfunktionen > Neutralüberstrom (4. Stromwandler) [1 oder 2]

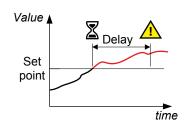

Parameter	Text	Bereich	len 1	In> 2
14210 oder 14220	Aktivieren	AUS EIN	AUS	AUS
14211 oder 14221	Sollwert	2 bis 120 %	30%	30%
14212 oder 14222	Timer	0,1 bis 3200 s	10 s	10 s
14213 oder 14223	Fehlerklasse	Fehlerklassen	Warnung	Warnung

8.2.11 Erdschluss-Überstrom (4. Stromwandler)

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Erdschluss-Überstrom (4. Stromwandler)			_

Dies ist der Überstromalarm für die Erdstrommessung.

Die Alarmreaktion basiert auf dem Erdstrom, wie er durch die 4. Strommessung gemessen wird, gefiltert, um die dritte Harmonische zu dämpfen (mindestens 18 dB).


Generator > Stromschutzfunktionen > Erdschluss-Überstrom (4. Stromwandler) [1 oder 2]

Parameter	Text	Bereich	le>1	le> 2
14230 oder 14240	Aktivieren	AUS EIN	AUS	AUS
14231 oder 14241	Sollwert	2 bis 120 %	10%	10%
14232 oder 14242	Timer	0,1 bis 3200 s	10 s	10 s
14233 oder 14243	Fehlerklasse	Fehlerklassen	Warnung	Warnung

8.2.12 Überfrequenz (ANSI 810)

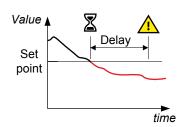
Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Überfrequenz	f>, f>>	810	< 100 ms

Die Alarmreaktion basiert auf der Grundfrequenz (auf der Grundlage der Phasenspannung), anhand der in Parameter 1204 getroffenen Auswahl.

Generator > Frequenzschutzfunktionen > Überfrequenz > G f< [1 bis 3]

Parameter	Text	Bereich	G f> 1	G f> 2	G f> 3
1211, 1221 oder 1231	Sollwert	100 bis 120 %	103%	105%	105%
1212, 1222 oder 1232	Timer	0,2 bis 100 s	10 s	5 s	5 s
1215, 1225 oder 1235	Aktivieren	AUS	AUS	AUS	AUS

Parameter	Text	Bereich	G f> 1	G f> 2	G f> 3
		EIN			
1216, 1226 oder 1236	Fehlerklasse	Fehlerklassen	Warnung	Warnung	Warnung


Generator > Frequenzschutzfunktionen > Frequenzerkennung, Typ

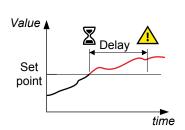
Parameter	Text	Bereich	Werkseinstellung
1204	Тур	L1 L2 L3 L1 oder L2 oder L3 L1 und L2 und L3	L1 oder L2 oder L3

8.2.13 Unterfrequenz (ANSI 81U)

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Unterfrequenz	f<, f<<	81U	< 100 ms

Die Alarmreaktion basiert auf der höchsten Grundfrequenz (basierend auf der Phasenspannung) von der Quelle. Dadurch wird sichergestellt, dass der Alarm nur aktiviert wird, wenn alle Phasenfrequenzen unter dem Sollwert liegen.

Generator > Frequenzschutzfunktionen > Unterfrequenz > G f< [1 bis 3]

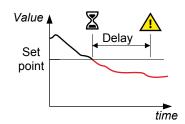

Parameter	Text	Bereich	G f< 1	G f< 2	G f< 3
1241, 1251 oder 1261	Sollwert	80 bis 100 %	97%	95%	95%
1242, 1252 oder 1262	Timer	0,2 bis 100 s	10 s	5 s	5 s
1245, 1255 oder 1265	Aktivieren	AUS EIN	AUS	AUS	AUS
1246, 1256 oder 1266	Fehlerklasse	Fehlerklassen	Warnung	Warnung	Warnung

ANMERKUNG Der Unterspannungsschutz ist gesperrt, wenn sich die Steuerung im Ruhezustand befindet.

8.2.14 Überlast (ANSI 32)

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Überlast	P>, P>>	32	< 100 ms

Die Alarmreaktion basiert auf der Wirkleistung (alle Phasen), von der Quelle, wie von der Steuerung gemessen.

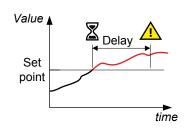

Generator > Leistungsschutz > Überlast > P> [1 bis 4]

Parameter	Text	Bereich	P>1	P> 2	P> 3	P> 4	P> 5
1451, 1461, 1471 oder 1481	Sollwert	-200 bis 200 %	100%	110%	100%	110%	100%
1452, 1462, 1472 oder 1482	Timer	0,1 bis 3200 s	10 s	5 s	10 s	5 s	10 s
1455, 1465, 1475 oder 1485	Aktivieren	AUS EIN	AUS	AUS	AUS	AUS	AUS
1456, 1466, 1476 oder 1486	Fehlerklas se	Fehlerklassen	Warnung	Gs- Auslösung	Gs- Auslösung	Gs- Auslösung	Gs- Auslösung

8.2.15 Niedrige Leistung

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Niedrige Leistung	_	-	< 100 ms

Die Alarmreaktion basiert auf der Wirkleistung (alle Phasen), von der Quelle, wie von der Steuerung gemessen.

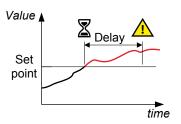

AC-Konfiguration und Schutzfunktionen > Leistungsschutzfunktionen > Überlast > P<

Parameter	Text	Bereich	P<
1491	Sollwert	-200 bis 200 %	30%
1492	Timer	0,1 bis 3200 s	3200 s
1495	Aktivieren	AUS EIN	AUS
1496	Fehlerklasse	Fehlerklassen	PVB auslösen

8.2.16 Rückleistung (ANSI 32R)

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Rückleistung	P<, P<<	32R	< 100 ms

Die Alarmreaktion basiert auf der Wirkleistung (alle Phasen), zur Quelle, wie von der Steuerung gemessen.

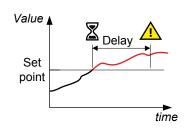

Generator > Leistungsschutzfunktionen > Rückleistung > -P> [1 bis 3]

Parameter	Text	Bereich	-P>1	-P> 2	-P > 3
1001, 1011 oder 1071	Sollwert	-200 bis 0 %	-5%	-5%	-5%
1002, 1012 oder 1072	Timer	0,1 bis 100 s	10 s	10 s	10 s
1005, 1015 oder 1075	Aktivieren	AUS EIN	EIN	EIN	AUS
1006, 1016 oder 1076	Fehlerklasse	Fehlerklassen	Gs-Auslösung	Gs-Auslösung	Gs-Auslösung

8.2.17 Blindleistungsesxport (ANSI 400)

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Blindleistungsexport (Übererregung)	Q>, Q>>	400	< 100 ms

Die Alarmreaktion basiert auf der Blindleistung (Q) von der Quelle, wie von der Steuerung gemessen. Blindleistungsexport liegt vor, wenn der Generator eine induktive Last speist.


Generator > Schutz Blindleistung > Übererregung > Q>

Parameter	Text	Bereich	Werkseinstellung
1531	Sollwert	0 bis 100 %	60%
1532	Timer	0,1 bis 100 s	10 s
1535	Aktivieren	AUS EIN	AUS
1536	Fehlerklasse	Fehlerklassen	Warnung

8.2.18 Blindleistungsimport (ANSI 40U)

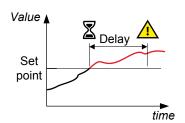
Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Blindleistungsimport (Erregungsverlust/Untererregung)	Q<, Q<<	40U	< 100 ms

Die Alarmreaktion basiert auf der Blindleistung (Q) zur Quelle, wie von der Steuerung gemessen und berechnet. Blindleistungsimport liegt vor, wenn der Generator eine kapazitive Last speist.

Generator > Schutz Blindleistung > Untererregung > -Q>

Parameter	Text	Bereich	Werkseinstellung
1521	Sollwert	0 bis 150 %	50%
1522	Timer	0,1 bis 100 s	10 s
1525	Aktivieren	AUS EIN	AUS
1526	Fehlerklasse	Fehlerklassen	Warnung

8.3 Sammelschiene, Standardschutzfunktionen


Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit	Alarme
Überspannung	U>, U>>	59	< 50 ms	3
Unterspannung	U<, U<<	27	< 50 ms	4
Spannungsasymmetrie	UUB>	47	< 200 ms*	1
Überfrequenz	f>, f>>	810	< 50 ms	3
Unterfrequenz	f<, f<<	81U	< 50 ms	4

ANMERKUNG * Diese Ansprechzeit umfasst die minimale benutzerdefinierte Zeitverzögerung von 100 ms.

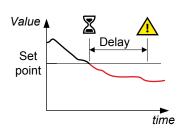
8.3.1 Sammelschienenüberspannung (ANSI 59)

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Überspannung	U>, U>>	59	< 50 ms

Die Alarmreaktion basiert auf der höchsten Phase-Phase-Spannung oder der höchsten Phase-Neutral-Spannung der Sammelschiene, wie von der Steuerung gemessen.

Sammelschiene > Spannungsschutzfunktionen > Überspannung > SS U> [1 bis 3]

Parameter	Text	Bereich	SS U> 1	SS U> 2	SS U> 3
1271, 1281 oder 1291	Sollwert	100 bis 120 %	103%	105%	105%
1272, 1282 oder 1292	Timer	0,04 bis 99,99 s	10 s	5 s	5 s
1275, 1285 oder 1295	Aktivieren	AUS EIN	AUS	AUS	AUS
1276, 1286 oder 1296	Fehlerklasse	Fehlerklassen	Warnung	Warnung	Warnung


Sammelschiene > Spannungsschutzfunktionen > Spannungserkennungsart

Parameter	Text	Bereich	Werkseinstellung
1202	Тур	Phase-Phase Phase-Null	Phase-Phase

8.3.2 Sammelschienenunterspannung (ANSI 27)

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Unterspannung	U<, U<<	27	< 50 ms

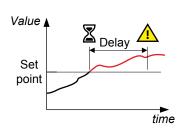
Die Alarmreaktion basiert auf der niedrigsten Phase-Phase-Spannung oder der niedrigsten Phase-Neutral-Spannung der Sammelschiene, wie von der Steuerung gemessen.

Sammelschiene > Spannungsschutzfunktionen > Unterspannung > SS U< [1 bis 4]

Parameter	Text	Bereich	SS U< 1	SS U< 2	SS U< 3	SS U< 4
1301, 1311, 1321 oder 1331	Sollwert	40 bis 100 %	97%	95%	97%	95%
1302, 1312, 1322 oder 1332	Timer	0,04 bis 99,99 s	10 s	5 s	10 s	5 s
1305, 1315, 1325 oder 1335	Aktivieren	AUS EIN	AUS	AUS	AUS	AUS
1306, 1316, 1326 oder 1336	Fehlerklasse	Fehlerklassen	Warnung	Warnung	Warnung	Warnung

Sammelschiene > Spannungsschutzfunktionen > Spannungserkennungsart

Parameter	Text	Bereich	Werkseinstellung
1202	Тур	Phase-Phase Phase-Null	Phase-Phase


8.3.3 Sammelschienen-Spannungsasymmetrie (ANSI 47)

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Spannungsungleichgewicht (Spannungsasymmetrie)	UUB>	47	< 200 ms*

ANMERKUNG * Diese Ansprechzeit umfasst die minimale benutzerdefinierte Zeitverzögerung von 100 ms.

Die Alarmreaktion basiert auf der höchsten Differenz zwischen einem der drei Sammelschienen-Phase-Phase-Spannungswerte oder Phase-Neutral-Effektivwerte und der durchschnittlichen Spannung, wie von der Steuerung gemessen. Die Phase-Phase-Spannung ist der Standard.

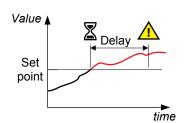
Wenn Phase-Phase-Spannungen verwendet werden, berechnet die Steuerung die durchschnittliche Phase-Phase-Spannung. Die Steuerung berechnet dann die Differenz zwischen jeder Phase-Phase-Spannung und der durchschnittlichen Spannung. Schließlich dividiert die Steuerung die maximale Differenz durch die durchschnittliche Spannung, um die Spannungsasymmetrie zu erhalten. Siehe das Beispiel.

Sammelschiene > Spannungsschutzfunktionen > Spannungsasymmetrie > SS Asymmetrie U

Parameter	Text	Bereich	Werkseinstellung
1621	Sollwert	0 bis 50 %	6%
1622	Timer	0,1 bis 100 s	10 s
1625	Aktivieren	AUS EIN	AUS
1626	Fehlerklasse	Fehlerklassen	Warnung

Sammelschienen-Spannungsasymmetrie, Beispiel

Die Sammelschiene hat eine Nennspannung von 230 V. Die Spannung L1-L2 beträgt 235 V, die Spannung L2-L3 beträgt 225 V und die Spannung L3-L1 beträgt 210 V.


Die durchschnittliche Spannung beträgt 223,3 V. Die Differenz zwischen der Spannung von Phase zu Phase und dem Durchschnitt beträgt 12,7 V für L1-L2, 2,7 V für L2-L3 und 13,3 V für L3-L1.

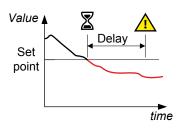
Die Asymmetrie der Sammelschienenspannung beträgt 13,3 V / 223,3 V = 0,06 = 6 %.

8.3.4 Sammelschienenüberfrequenz (ANSI 810)

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Überfrequenz	f>, f>>	810	< 50 ms

Die Alarmreaktion basiert auf der niedrigsten Grundfrequenz (basierend auf der Phasenspannung) von der Sammelschiene. Dadurch wird sichergestellt, dass der Alarm nur aktiviert wird, wenn alle Phasenfrequenzen über dem Sollwert liegen.

Sammelschiene > Frequenzschutzfunktionen > Überfrequenz > SS f> [1 bis 4]


Parameter	Text	Bereich	SS f> 1	SS f> 2	SS f> 3	SS f> 4
1351, 1361, 1371 oder 1921	Sollwert	100 bis 120 %	103%	105%	105%	102%
1352, 1362, 1372 oder 1922	Timer	0,04 bis 99,99 s	10 s	5 s	5 s	5600 s*
1355, 1365, 1375 oder 1925	Aktivieren	AUS EIN	AUS	AUS	AUS	AUS
1356, 1366, 1376 oder 1926	Fehlerklasse	Fehlerklassen	Warnung	Warnung	Warnung	Warnung

ANMERKUNG * Der Bereich für diesen Alarm beträgt 1500 bis 6000 s.

8.3.5 Sammelschienenunterfrequenz (ANSI 81U)

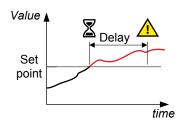
Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Unterfrequenz	f<, f<<	81U	< 50 ms

Die Alarmreaktion basiert auf der höchsten Grundfrequenz (basierend auf der Phasenspannung) von der Sammelschiene. Dadurch wird sichergestellt, dass der Alarm nur aktiviert wird, wenn alle Phasenfrequenzen unter dem Sollwert liegen.

Sammelschiene > Frequenzschutzfunktionen > Unterfrequenz > SS f< [1 bis 5]

Parameter	Text	Bereich	SS f< 1	SS f< 2	SS f< 3	SS f< 4	SS f< 5
1381, 1391, 1401, 1411 oder 1931	Sollwert	80 bis 100 %	97%	95%	97%	95%	95%
1382, 1392, 1402, 1412 oder 1932	Timer	0,04 bis 99,99 s	10 s	5 s	10 s	5 s	5600 s*
1385, 1395, 1405, 1415 oder 1935	Aktivieren	AUS EIN	AUS	AUS	AUS	AUS	AUS
1386, 1396, 1406, 1416 oder 1936	Fehlerklas se	Fehlerklassen	Warnung	Warnung	Warnung	Warnung	Warnung

ANMERKUNG * Der Bereich für diesen Alarm beträgt 1500 bis 6000 s.

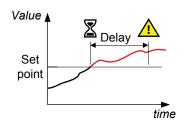

8.4 Netzschutz

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit	Alarme
Überstrom (4. Stromwandler)	3 >, 3 >>	-	-	2
Rückleistung (4. Stromwandler)	P<, P<<	-	-	2
Überlast (4. Stromwandler)	P>, P>>	-	_	2

8.4.1 Überstrom (4. Stromwandler)

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Überstrom für 4. Stromwandlermessung	3I>, 3I>>	-	-

Die Alarmreaktion basiert auf den höchsten Phasenstrom-Echt-Effektivwerten der Quelle, wie von der Steuerung gemessen.

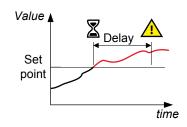

Netz > Schutzfunktionen > Leistungsschutzfunktionen (4. Stromwandler) [1 bis 2]

Parameter	Text	Bereich	I> 1	l> 2
7421, 7431	Sollwert	50 bis 200 %	115%	120%
7422, 7432	Timer	0,1 bis 3200 s	10 s	10 s
7425, 7435	Aktivieren	AUS EIN	AUS	AUS
7426, 7436	Fehlerklasse	Fehlerklassen	Warnung	Warnung

8.4.2 Überlast (4. Stromwandler)

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Überlast	P>, P>>	-	-

Die Alarmreaktion basiert auf der Wirkleistung (alle Phasen), von der Quelle, wie von der Steuerung gemessen.


Netz > Schutzfunktionen > Leistungsschutzfunktionen (4. Stromwandler) [1 bis 2]

Parameter	Text	Bereich	P>1	P> 2
7461, 7471	Sollwert	-200 bis 200 %	100%	110%
7462, 7472	Timer	0,1 bis 3200 s	10 s	5 s
7465, 7475	Aktivieren	AUS EIN	AUS	AUS
7466, 7476	Fehlerklasse	Fehlerklassen	Warnung	Warnung

8.4.3 Rückleistung (4. Stromwandler)

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit
Rückleistung	P<, P<<	-	-

Die Alarmreaktion basiert auf der Wirkleistung (alle Phasen), zur Quelle, wie von der Steuerung gemessen.

Netz > Schutzfunktionen > Leistungsschutzfunktionen (4. Stromwandler) [1 bis 2]

Parameter	Text	Bereich	-P>1	-P> 2
7441, 7451	Sollwert	-200 bis 0 %	-5%	-5%
7442, 7452	Timer	0,1 bis 100 s	10 s	10 s
7445, 7455	Aktivieren	AUS EIN	AUS	AUS
7446, 7456	Fehlerklasse	Fehlerklassen	Warnung	Warnung

8.5 Zusätzliche Schutzfunktionen

Schutz	IEC-Symbol (IEC 60617)	ANSI (IEEE C37.2)	Ansprechzeit	Alarme
AC-Mittelwert	-	-	-	2

8.5.1 AC-Mittelwert

Diese Funktion ist dafür vorgesehen, einen Alarm auszulösen, wenn der Mittelwert einer bestimmten Messung über einen bestimmten Zeitraum einen Sollwert überschreitet.

Der AC-Mittelwert wird auf Grundlage des Effektivwertes der drei Phasen berechnet. Dies geschieht zum Beispiel jedes Mal, wenn die Hauptspannungsmessung aktualisiert wird.

Die Parameter für den AC-Mittelwert können nur über die Utility-Software konfiguriert werden.

ANMERKUNG Wenn sich die Steuerung im Leerlauf befindet, ist die AC-Mittelwertschutzfunktion gesperrt.

Generator > Mittlere Schutzfunktionen > Mittlere L-L AC-Effektivspannung hoch [1 oder 2]

Parameter	Text	Bereich	Durchschn. G U> L-L 1	Durchschn. G U> L-L 2
14001 oder 14011	Sollwert	100,0 bis 120,0 %	103,0%	105,0%
14002 oder 14012	Timer	0,1 bis 100,0 s	10,0 s	10,0 s
14005 oder 14015	Aktivieren	AUS EIN	AUS	AUS
14006 Or 14016	Fehlerklasse	Fehlerklassen	Warnung	Warnung

Generator > Mittelwertschutzfunktionen > Mittlere L-L AC-Effektivspannung niedrig [1 oder 2]

Parameter	Text	Bereich	Durchschn. G U< L-L 1	Durchschn. G U< L-L 2
14021 oder 14031	Sollwert	100,0 bis 120,0 %	97,0%	95,0%
14022 oder 14032	Timer	0,1 bis 100,0 s	10,0 s	5,0 s
14025 oder 14035	Aktivieren	AUS EIN	AUS	AUS
14026 oder 14036	Fehlerklasse	Fehlerklassen	Warnung	Warnung

Generator > Mittelwertschutzfunktionen > Mittlere L-N AC-Effektivspannung hoch [1 oder 2]

Parameter	Text	Bereich	Durchschn. G U> L-N 1	Durchschn. G U> L-N 2
14041 oder 14051	Sollwert	100,0 bis 120,0 %	103,0%	105,0%
14042 oder 14052	Timer	0,1 bis 100,0 s	10,0 s	5,0 s
14045 oder 14055	Aktivieren	AUS EIN	AUS	AUS
14046 oder 14056	Fehlerklasse	Fehlerklassen	Warnung	Warnung

Generator > Mittelwertschutzfunktionen > Mittlere L-N AC-Effektivspannung niedrig [1 oder 2]

Parameter	Text	Bereich	Durchschn. G U< L-N 1	Durchschn. G U< L-N 2
14061 oder 1471	Sollwert	100,0 bis 120,0 %	97,0%	95,0%
14062 oder 1472	Timer	0,1 bis 100,0 s	10,0 s	5,0 s
14065 oder 1475	Aktivieren	AUS	AUS	AUS

Parameter	Text	Bereich	Durchschn. G U< L-N 1	Durchschn. G U< L-N 2
		EIN		
14066 oder 1476	Fehlerklasse	Fehlerklassen	Warnung	Warnung

Generator > Mittelwertschutzfunktionen > Mittlere AC-Frequenz hoch [1 oder 2]

Parameter	Text	Bereich	Durchschn. G f> 1	Durchschn. G f> 2
14081 oder 14091	Sollwert	100,0 bis 120,0 %	103,0%	105,0%
14082 oder 14092	Timer	0,1 bis 100,0 s	10,0 s	5,0 s
14085 oder 14095	Aktivieren	AUS EIN	AUS	AUS
14086 oder 14096	Fehlerklasse	Fehlerklassen	Warnung	Warnung

Generator > Mittelwertschutzfunktionen > Mittlere AC-Frequenz niedrig [1 oder 2]

Parameter	Text	Bereich	Durchschn. G f< 1	Durchschn. G f< 2
14101 oder 14111	Sollwert	100,0 bis 120,0 %	97,0%	95,0%
14102 oder 14112	Timer	0,1 bis 100,0 s	10,0 s	5,0 s
14105 oder 14115	Aktivieren	AUS EIN	AUS	AUS
14106 oder 14116	Fehlerklasse	Fehlerklassen	Warnung	Warnung

Generator > Mittelwertschutzfunktionen > Mittlerer AC-Strom hoch [1 oder 2]

Parameter	Text	Bereich	Durchschn. I> 1	Durchschn. I> 2
14121 oder 14131	Sollwert	50,0 bis 200,0 %	115,0%	120,0%
14122 oder 141312	Timer	0,1 bis 3200,0 s	10,0 s	5,0 s
14125 oder 14135	Aktivieren	AUS EIN	AUS	AUS
14126 oder 14136	Fehlerklasse	Fehlerklassen	Warnung	Warnung

9. Eingänge und Ausgänge

9.1 Digitaleingänge

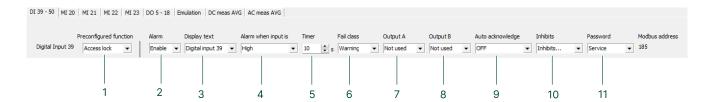
9.1.1 Standard-Digitaleingänge

Die Steuerung verfügt standardmäßig über 12 Digitaleingänge, die sich an den Klemmen 39 bis 50 befinden. Alle Eingänge sind konfigurierbar.

Digitaleingänge

Eingang	Text	Funktion	Technische Daten
39	Eingang	Auto-Start/Stopp	Nur Minus-schaltend, < 100 Ω
40	Eingang	Konfigurierbar	Nur Minus-schaltend, < 100 Ω
41	Eingang	Konfigurierbar	Nur Minus-schaltend, < 100 Ω
42	Eingang	Konfigurierbar	Nur Minus-schaltend, < 100 Ω
43	Eingang	Konfigurierbar	Nur Minus-schaltend, < 100 Ω
44	Eingang	Konfigurierbar	Nur Minus-schaltend, < 100 Ω
45	Eingang	Konfigurierbar	Nur Minus-schaltend, < 100 Ω
46	Eingang	Konfigurierbar	Nur Minus-schaltend, < 100 Ω
47	NS ein	Konfigurierbar (anwendungsabhängig)	Nur Minus-schaltend, < 100 Ω
48	NS aus	Konfigurierbar (anwendungsabhängig)	Nur Minus-schaltend, < 100 Ω
49	GS ein	Konfigurierbar (anwendungsabhängig)	Nur Minus-schaltend, < 100 Ω
50	Gs aus	Konfigurierbar (anwendungsabhängig)	Nur Minus-schaltend, < 100 Ω

9.1.2 Digitaleingänge konfigurieren


Die Digitaleingänge können über die Steuerung oder mit der Utility-Software konfiguriert werden (auf einige Parameter kann nur mit der Utility-Software zugegriffen werden).

E/A-Einstellungen > Eingänge > Digitaleingang > Digitaleingang [39 bis 50]

Parameter	Text	Bereich	Werkseinstellung
3001, 3011, 3021, 3031, 3041, 3051, 3061, 3071, 3081, 3091, 3101 oder 3111	Verzögerung	0,0 bis 3200 s	10,0 s
3002, 3012, 3022, 3032, 3042, 3052, 3062, 3072, 3082, 3092, 3102 oder 3112	Ausgang A	Relais und M-Logik	Nicht benutzt
3003, 3013, 3023, 3033, 3043, 3053, 3063, 3073, 3083, 3093, 3103 oder 3113	Ausgang B	Relais und M-Logik	Nicht benutzt
3004, 3014, 3024, 3034, 3044, 3054, 3064, 3074, 3084, 3094, 3104 oder 3114	Alarm	Deaktivieren Aktivieren	Deaktivieren
3005, 3015, 3025, 3035, 3045, 3055, 3065, 3075, 3085, 3095, 3105 oder 3115	Fehlerklasse	Fehlerklassen	Warnung
3006, 3016, 3026, 3036, 3046, 3056, 3066, 3076, 3086, 3096, 3106 oder 3116	Тур	Hoch Niedrig	Hoch

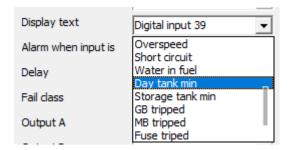
Konfigurieren Sie einen Digitaleingang mit der Utility-Software

Wählen Sie in der Utility-Software unter E/A & Hardware-Setup den zu konfigurierenden Digitaleingang.

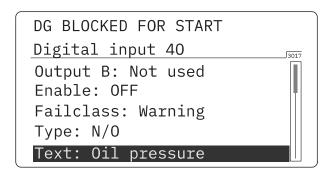
Nr.	Text	Beschreibung
1	Vorkonfigurierte Funktion	Auswahl einer Funktion für den digitalen Eingang.
2	Alarm	Aktivierung oder Deaktivierung der Alarmfunktion.
3	Displaytext	Auswahl des Displaytextes. Dies wird auch auf dem Display angezeigt.
4	Alarmsignal hoch	Der Alarm wird aktiviert, wenn das Signal hoch ist.
5	Timer	Die Timer-Einstellung ist die Zeit vom Erreichen der Alarmstufe bis zur Auslösung des Alarms.
6	Fehlerklasse	Wählen Sie die gewünschte Fehlerklasse aus der Liste aus. Wenn der Alarm auftritt, reagiert die Steuerung entsprechend der gewählten Fehlerklasse.
7	Ausgang A	Wählen Sie die Klemme (oder die Grenzwertoption), die durch einen Alarm aktiviert werden soll. Die Option "Grenzwert" macht den Alarm als Eingangsereignis in M-Logic nutzbar.
8	Ausgang B	Wählen Sie die Klemme (oder die Grenzwertoption), die durch einen Alarm aktiviert werden soll. Die Option "Grenzwert" macht den Alarm als Eingangsereignis in M-Logic nutzbar.
9	Auto Quittierung	Wenn diese Option eingestellt ist, wird der Alarm automatisch quittiert, wenn das mit dem Alarm verbundene Signal verschwindet.
10	Unterdrückungsfunktionen	Wählen Sie die Ausnahmen aus, in denen ein Alarm aktiviert werden muss. Um festzulegen, wann die Alarme aktiv sein sollen, verfügt jeder Alarm über eine konfigurierbare Einstellung zur Alarmunterdrückung.
11	Passwortebene	Wählen Sie die Passwortebene, die für die Änderung dieses Parameters erforderlich ist (kann nicht von einem Benutzer mit niedrigeren Rechten bearbeitet werden).

Klicken Sie auf die Taste In das Gerät schreiben 🥦, um die Einstellungen in die Steuerung zu schreiben.

9.1.3 Benutzerdefinierte Alarme


Sie können benutzerdefinierte Alarme für die Digitaleingänge mit der Utility-Software oder an der Steuerung konfigurieren.

In der Utility-Software:


- 1. Wählen Sie das Tab E/A & Hardware-Setup
- 2. Wählen Sie eines der Tabs für den Digitaleingang.
- 3. Sie können für jeden aktiven Digitaleingang benutzerdefinierte Alarme konfigurieren. Um die Alarmoptionen aufzurufen, müssen Sie im Dropdown-Menü *Alarm* den Punkt *Aktivieren* auswählen.

4. Für die benutzerdefinierten Alarme sind vordefinierte Anzeigetextoptionen verfügbar:

An der Steuerung

9.2 DC Relaisausgänge

Die Steuerung verfügt standardmäßig über 12 x DC-Relaisausgänge. Die Ausgänge sind in zwei Gruppen mit unterschiedlichen elektrischen Eigenschaften unterteilt.

Alle Ausgänge sind konfigurierbar, sofern nicht anders angegeben.

Relaisausgänge, Gruppe 1

Elektrische Eigenschaften

- Spannung: 0 bis 36 V DC
- · Strom: 15 A DC Einschaltstrom, 3 A DC Dauerstrom

Relais	Aggregat Werkseinstellung
Relais 05	Betriebsmagnet
Relais 06	Anlasser

Relaisausgänge, Gruppe 2

Elektrische Eigenschaften

- Spannung: 4,5 bis 36 V DC
- Strom: 2 A DC Einschaltstrom, 0,5 A DC Dauerstrom

Relais	Aggregat Werkseinstellung
Relais 09	Startvorbereitung
Relais 10	Stoppmagnet
Relais 11	Status in Ordnung
Relais 12	Hupe
Relais 13	Keine Werkseinstellung

Relais	Aggregat Werkseinstellung	
Relais 14	Keine Werkseinstellung	
Relais 15	Ns EIN Relais	
Relais 16	Ns AUS Relais	
Relais 17	Gs EIN Relais*	
Relais 18	Gs AUS Relais*	

ANMERKUNG * Nicht konfigurierbar

9.2.1 Konfigurieren Sie einen Relaisausgang

Verwenden Sie die Utility-Software unter E/A & Hardware-Setup, DO 5 - 18 zur Konfiguration der Relaisausgänge.

	<u>Function</u>		<u>Alarm</u>			
	Output Function		Alarm function	Delay	Password	
Output 5	Run coil 🔻	•	M-Logic / Limit relay	0	Service	•

Einstellung	Beschreibung
Ausgangsfunktion	Wählen Sie eine Ausgangsfunktion.
Alarmfunktion	Alarmrelais NE M-Logic / Grenzwertrelais Alarmrelais ND
Verzögerung	Der Alarm-Timer.
Passwort	Wählen Sie die Passwortebene, um diese Konfiguration zu ändern (kann nicht von einem Benutzer mit niedrigeren Berechtigungen bearbeitet werden).

9.3 Analogeingänge

9.3.1 Einführung

Die Steuerung verfügt über vier Analogeingänge (auch Multi-Eingänge genannt): Multi-Eingang 20, Multi-Eingang 21, Multi-Eingang 22 und Multi-Eingang 23. Klemme 19 ist die gemeinsame Erdung für die Multi-Eingänge.

Die Multi-Eingänge können konfiguriert werden als:

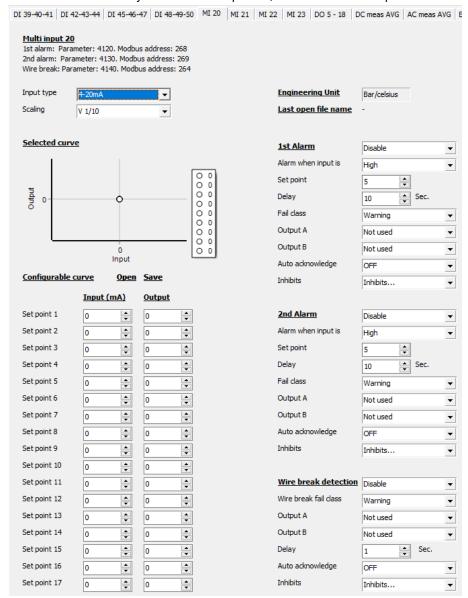
- 4-20 mA
- 0-10 V DC
- PT100
- RMI Öldruck
- · RMI Wassertemperatur
- RMI Füllstand
- RMI benutzerdefiniert
- Binär-/Digitaleingang

Die Multi-Eingänge können nur mit der Utility-Software konfiguriert werden.

Verdrahtung

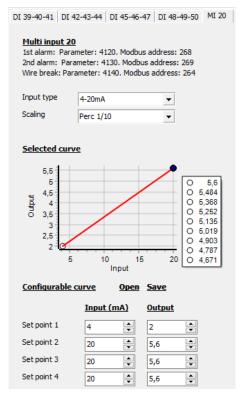
Die Verdrahtung hängt von der Art der Messung ab (Strom, Spannung oder Widerstand).

9.3.2 Anwendungsbeschreibung

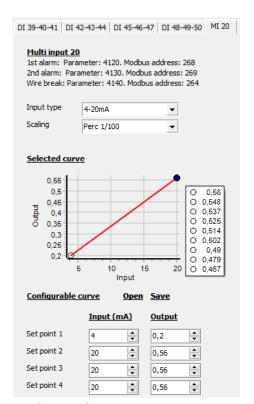

Die Multi-Eingänge können in verschiedenen Anwendungen eingesetzt werden, z. B.:

- Temperatursensor Pt100-Widerstände werden häufig zur Temperaturmessung eingesetzt. In der Utility-Software können Sie wählen, ob die Temperatur in Celsius oder Fahrenheit angezeigt werden soll.
- RMI-Eingänge Die Steuerung hat drei RMI-Typen; Öl, Wasser und Kraftstoff. Es ist möglich, innerhalb jedes RMI-Typs verschiedene Untertypen zu wählen. Es gibt auch einen konfigurierbaren Typ.
- Ein zusätzlicher digitaler Eingang Wenn der Eingang als digital konfiguriert ist, funktioniert er wie ein zusätzlicher digitaler Eingang.
- Max. Differenz zwischen Umgebungs- und Generatortemperatur. Die Differenzmessung kann verwendet werden, um einen Alarm auszugeben, wenn zwei Werte zu weit voneinander entfernt sind.

9.3.3 Konfigurieren von Multieingängen


Konfigurieren Sie jeden Multi-Eingang so, dass er mit dem angeschlossenen Sensor übereinstimmt.

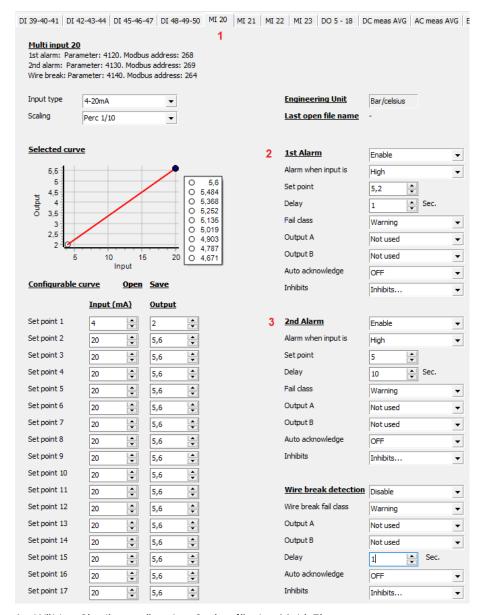
1. Wählen Sie in der Utility-Software die Option E/A & Hardware-Setup und dann die Option MI 20 / 21 / 22 / 23.



2. Wählen Sie die entsprechende Skalierung.

Beispiele

Skalierung 1/10



Skalierung 1/100

9.3.4 Alarme

Für jeden Multi-Eingang sind zwei Alarmlevel verfügbar. Bei zwei Alarmen ist es möglich, dass der erste Alarm langsam reagiert, während der zweite Alarm schneller reagieren kann. Wenn der Sensor z. B. den Generatorstrom als Schutz vor Überlast misst, ist eine kleine Überlast für einen kürzeren Zeitraum akzeptabel, aber im Falle einer großen Überlast sollte der Alarm schnell aktiviert werden.

Verwenden Sie die Utility-Software, um die Multi-Eingangs-Alarme zu konfigurieren. Wählen Sie E/A & Hardware-Setup und dann MI 20 / 21 / 22 /23.

- 1. Wählen Sie die gewünschte Option für den Multi-Eingang aus.
- 2. Konfigurieren Sie die Parameter für den ersten Alarm.
- 3. Konfigurieren Sie die Parameter für den zweiten Alarm.

Sensoren mit max. Ausgang kleiner als 20 mA

Wenn ein Sensor einen maximalen Ausgang von weniger als 20 mA hat, muss berechnet werden, was ein 20-mA-Signal anzeigen würde.

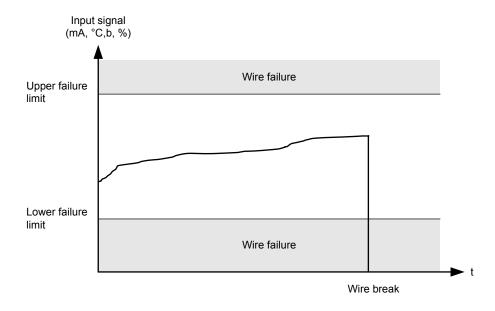
Beispiel: Ein Drucksensor liefert 4 mA bei 0 bar und 12 mA bei 5 bar.

- (12 4) mA = 8 mA = 5 bar
- 1 mA = 5 bar/8 = 0,625 bar
- 20 4 mA = 16 × 0,625 bar = 10 bar

Konfigurieren von Multi-Eingangs-Alarmen über das Display

Alternativ können Sie die Multi-Eingangs-Alarme auch über das Display konfigurieren: E/A-Einstellungen > Eingänge > Multi-Eingang > Multi-Eingang [20 bis 23].1 / 2

9.3.5 Drahtbruch


Um die an die Multi-Eingänge und Analogeingänge angeschlossenen Sensoren/Drähte zu überwachen, können Sie die Drahtbruchfunktion für jeden Eingang aktivieren. Liegt der Messwert am Eingang außerhalb des normalen dynamischen

Bereichs des Eingangs, wird dies als Kurzschluss oder Unterbrechung erkannt. Ein Alarm mit einer konfigurierbaren Fehlerklasse wird aktiviert.

Eingang	Drahtbruchbereich	Normalbereich	Drahtbruchbereich	
4-20 mA	<3 mA	4-20 mA	>21 mA	
0-10 V DC	≤0 V DC	-	N/v	
RMI ÖI, Typ 1	<10.0 Ω	-	>184,0 Ω	
RMI ÖI, Typ 2	<10.0 Ω	-	>184,0 Ω	
RMI ÖI, Typ 4	<33.0 Ω	-	240,0 Ω	
RMI Temp, Typ 1	<10.0 Ω	-	>1350,0 Ω	
RMI Temp, Typ 2	<18.2 Ω	-	>2400,0 Ω	
RMI Temp, Typ 3	<3.6 Ω	-	>250,0 Ω	
RMI Temp, Typ 4	<32.0 Ω	-	>2500,0 Ω	
RMI Kraftstoff, Typ 1	<1.6 Ω	-	>78,8 Ω	
RMI Kraftstoff, Typ 2	<3.0 Ω	-	>180,0 Ω	
RMI Kraftstoff, Typ 4	<33.0 Ω	-	>240,0 Ω	
RMI konfigurierbar	< kleinster Widerstand	-	> größter Widerstand	
RMI benutzerdefiniert	< kleinster Widerstand	-	> größter Widerstand	
PT100	<82.3 Ω	-	>194,1 Ω	
Pegelschalter	Nur bei geöffnetem Schalter aktiv			

Prinzip

Das Diagramm zeigt, dass bei einem Drahtbruch des Eingangs der Messwert auf Null fällt und der Alarm ausgelöst wird.

Konfigurieren von Drahtbruchalarmen über die Utility-Software oder das Display

Sie können die Utility-Software verwenden, um Drahtbruchalarme zu konfigurieren. Alternativ können Sie das Display verwenden, um Drahtbruchalarme zu konfigurieren: E/A-Einstellungen > Eingänge > Multi.Eingang > Drahtbruch [20 bis 23]

9.3.6 RMI-Sensortypen

Die Multi-Eingänge können als RMI-Eingänge konfiguriert werden.

Die verfügbaren RMI-Eingangstypen sind:

- RMI Öldruck
- RMI Wassertemperatur
- RMI Füllstand
- · RMI benutzerdefiniert

Für jeden RMI-Eingangstyp können Sie verschiedene Kurven auswählen, einschließlich einer konfigurierbaren Kurve. Die konfigurierbare Kurve hat bis zu zwanzig Sollwerte. Der Widerstand und der Druck können eingestellt werden.

ANMERKUNG Der Sensorbereich beträgt 0 bis 2500 Ω .

ANMERKUNG Wenn der RMI-Eingang als Niveauschalter verwendet wird, darf keine Spannung an den Eingang angeschlossen werden. Wenn Spannung an die RMI-Eingänge angelegt wird, werden diese beschädigt.

9.3.7 Differenzialmessung

Die Differenzialmessung vergleicht zwei Messungen und erzeugt einen Alarm oder eine Auslösung, wenn die Differenz zwischen zwei Messungen zu groß (oder zu klein) wird. Um den Alarm zu aktivieren, wenn die Differenz zwischen den beiden Eingängen niedriger ist als der Sollwert des Alarms, entfernen Sie das Häkchen bei *Alarm, Hoch* in der Alarmkonfiguration.

Es ist möglich, bis zu sechs Vergleiche durchzuführen. Für jeden Vergleich können zwei Alarme konfiguriert werden.

Funktionen > Delta-Alarme > Vergleichssatz [1 bis 6]

Parameter	Text	Bereich	Werkseinstellung
4601, 4603, 4605, 4671, 4673 oder 4675	Eingang A für Vergleichssatz [1 bis 6]	Ciaha untan	Multi-Eingang 20
4602, 4604, 4606, 4672, 4674 oder 4676	Eingang B für Vergleichssatz [1 bis 6]	Siehe unten.	

Funktionen > Delta-Alarme > Vergleichssatz [1 bis 6] > Delta ana[1 bis 6] [1 oder 2]

Parameter	Text	Bereich	Werkseinstellung
4611, 4631, 4651, 4681, 4701 oder 4721	Sollwert 1	-999,9 bis 999,9	1,0
4621, 4641, 4661, 4691, 4711 oder 4731	Sollwert 2	-999,9 bis 999,9	1,0
4612, 4632, 4652, 4682, 4702 oder 4722	Timer 1	0,0 bis 999,0 s	5,0 s
4622, 4642, 4662, 4692, 4712 oder 4732	Timer 2	0,0 bis 999,0 s	5,0 s
4613, 4633, 4653, 4683, 4703 oder 4723	Ausgang A Satz 1	Relais und M-Logik	_
4623, 4643, 4663, 4693, 4713 oder 4733	Ausgang A Satz 2		
4614, 4634, 4654, 4684, 4704 oder 4724	Ausgang B Satz 1		
4624, 4644, 4664, 4694, 4714 oder 4734	Ausgang B Satz 2		
4615, 4635, 4655, 4685, 4705 oder 4725	Aktivierung Satz 1	AUS	ALIC
4625, 4645, 4665, 4695, 4715 oder 4735	Aktivierung Satz 2	EIN	AUS
4616, 4636, 4656, 4686, 4706 oder 4726	Fehlerklasse Satz 1	Estate at the second	\A/
4626, 4646, 4666, 4696, 4716 oder 4736	Fehlerklasse Satz 2	Fehlerklassen	Warnung

Differenzialmessungen

Messung	Anmerkungen
Multi-Eingang [20 bis 23]	Der vom Multi-Eingang gemessene Wert. Multi-Eingang 20 ist die Standardeinstellung.
MK Öldruck (SPN 100)	Der MK-Öldruck.
MK Kühlmitteltemperatur (SPN 110)	Die MK-Kühlmitteltemperatur.
MK Öltemperatur (SPN 175)	Die MK-Öltemperatur.
MK Umgebungstemperatur (SPN 171)	Die MK-Umgebungstemperatur.
MK Ladeluftkühlertemperatur (SPN 52)	Die MK-Ladeluftkühlertemperatur.
MK Kraftstofftemperatur (SPN 174)	Die MK-Kraftstofftemperatur.
MK Kraftstoffvorlaufdruck (SPN 5579)	Der MK-Kraftstoffvorlaufdruck
MK Luftfilter 1 Differenzialdruck (SPN 107)	Der MK-Differenzialdruck von Luftfilter 1.
MK Luftfilter 2 Differenzialdruck (SPN 2809)	Der MK-Differenzialdruck von Luftfilter 2.
MK Kraftstoffversorgungspumpendruck (SPN 1381)	Der MK-Druck der Kraftstoffversorgungspumpe
MK Kraftstofffilter-Differenzialdruck SS (SPN 1382)	Der MK-Kraftstofffilter-Differenzialdruck, SS.
MK Ölfilter-Differenzialdruck (SPN 99)	Der MK-Ölfilter-Differenzialdruck.
MK T. Abgas links (SPN 2434)	Die MK- Abgastemperatur links
MK T. Abgas rechts (SPN 2433)	Die MK-Abgastemperatur rechts
MK Kraftstofffilter-Differenzialdruck (SPN 95)	Der MK-Kraftstofffilter-Differenzialdruck
MK T. Wicklung Maximalwert	Die MK-Wicklung, höchste Temperatur.
MK T. Wicklung Minimalwert	Die MK-Wicklung, niedrigste Temperatur.
MK T. Wicklung [1 bis 3]	Die MK-Wicklungstemperatur.
MK DEF Stufe (SPN 1761)	Die MK DEF-Stufe.
MK DEF Temp (SPN 3031)	Die MK-DEF-Temperatur.
MK Geschwindigkeit (SPN 190)	Die MK-Motordrehzahl.
Impulsaufnehmer-Geschwindigkeit	Die Motordrehzahl wird von dem an die Steuerung angebrachten Impulsaufnehmer gemessen.
KWG ISO5 Isolationswiderstand	Wenn KWG ISO5 verwendet wird, geht der Isolationswiderstand auf der Steuerung ein und wird dann mit einer 1/10-Skalierung und Delta-Alarmen in $k\Omega$ konvertiert.
MK Geschätzte prozentuale Lüfterdrehzahl (SPN 975)	Geschätzte Lüfterdrehzahl als Verhältniswert zwischen Lüfterantrieb (aktuelle Drehzahl) und unter Volllast laufendem Lüfterantrieb (maximale Lüfterdrehzahl).
MK Lüftergeschwindigkeit U/min (SPN 1639)	Die Drehzahl des mit dem Motorkühlsystem gekoppelten Lüfters.
Prozentuale Motorlast bei aktueller Drehzahl (SPN 92)	Der Verhältniswert zwischen tatsächlichem prozentualem Motordrehmoment und maximalem Drehmoment, das bei der aktuellen Motordrehzahl möglich ist. Beim Abbremsen des Motors wird der Wert auf ein Drehmoment von Null gesetzt.
Motor-Drehmoment nach Fahrerbedarf – Prozentuales Drehmoment (SPN 512) *	Das Ausgangsdrehmoment des Motors, das vom Fahrer eingefordert wird.
Tatsächliches Motor-Drehmoment – Prozentuales Drehmoment (SPN 513) *	Das errechnete Ausgangsdrehmoment des Motors.

ANMERKUNG * Nur für AGC-150-Generator im Seebetrieb (Inselbetrieb)

9.4 Verwendung eines Analogausgangs als Messumformer

Sie können die Messumforner 52 und/oder 55 so konfigurieren, dass sie Werte an ein externes System übertragen. Die Werte umfassen die Sollwerte der Steuerung und die AC-Messungen. Der Ausgangsbereich des Messumformers beträgt -10 bis 10 V.

Für einige der Werte können Sie eine Skala auswählen. Wählen Sie zum Beispiel für die Sammelschienenspannung (Parameter 5913) das Minimum in 5915 und das Maximum in 5914.

ANMERKUNG Diese Werte sind auch über Modbus verfügbar.

Parameter für die Verwendung eines Analogausgangs als Messumformer.

Parameter	Wert	Angaben
5823, 5824, 5825	P1	Wirkleistung des Aggregats
5853, 5854, 5855	S	Scheinleistung des Aggregats
5863, 5864, 5865	Q	Blindleistung des Aggregats
5873, 5874, 5875	LF	Leistungsfaktor des Stroms vom Aggregat
5883, 5884, 5885	f	Frequenz des Aggregats
5893, 5894, 5895	U	Aggregat L1-L2 Spannung
5903, 5904, 5905	1	Strom des Aggregats L1
5913, 5914, 5915	U Netz	Spannung Sammelschiene L1-L2
5923, 5924, 5925	f Ss	Sammelschienenfrequenz
5933, 5934, 5935	Eingang 20	Der am Analogeingang 20 empfangene Wert.
5943, 5944, 5945	Eingang 21	Der am Analogeingang 21 empfangene Wert.
5953, 5954, 5955	Eingang 22	Der am Analogeingang 22 empfangene Wert.

Einrichtung des Messumformers – Beispiel

Einrichtung des Messumformers 55 zur Übertragung der Aggregatleistung (0 bis 2 MW) als -10 bis 10 V-Signal:

Wählen Sie im Menü 5823 für den *Sollwert* die Option **-10 bis 10 V**. Für *Messumformer A* wählen Sie **Messumformer 55**.

Wählen Sie im Menü 5824 den Höchstwert (entspricht 10 V), d. h. 2000 kW.

Wählen Sie im Menü 5825 den Mindestwert (dies entspricht -10 V), d.h. OkW.