AGC 150, ASC 150

Instrucciones de instalación

1. Introducción

1.1 Acerca de las instrucciones de instalación	3
1.1.1 Versión de software	4
1.2 Advertencias y seguridad	4
1.3 Información legal	5
2. Descripción del producto	
2.1 Tipos de controladores	7
3. Montaje	
3.1 Dimensiones y peso	8
3.2 Herramientas y materiales	
3.3 Instrucciones de montaje	
4. Hardware	
4.1 Conexiones de lado trasero	10
5. Cableado	14
5.1 Descripción general del cableado	
5.1.2 Cableado típico del controlador del generador	
5.1.3 Cableado típico de un controlador de interruptor acoplador de barras (BTB)	
5.1.4 Cableado típico de un controlador de interruptor acopiador de barras (BTB)	
5.1.5 Cableado típico de un controlador autónomo marino	
5.1.6 Cableado típico de un controlador autonomo marmo	
5.1.7 Cableado típico de controlador de propulsión por motor de combustión	
5.1.8 Cableado habitual de un controlador de almacenamiento	
5.1.9 Cableado habitual de un controlador de almaceriamiento	
5.1.10 Cableado típico de un controlador de interruptor acoplador de barras (ATS)	
5.1.11 Cableado habitual de un controlador PMS lite	
5.1.12 Directrices de cableado: mejores prácticas para la conexión a tierra	
5.2 Conexiones de corriente alterna	
5.2.1 Corriente L4	
5.2.2 Puesta a tierra del transformador de intensidad	
5.2.3 Fusibles de medición de tensión	
5.2.4 Entradas analógicas	
5.3 Conexiones de corriente continua (CC)	
5.3.1 Entradas digitales	
5.3.2 Salidas digitales	35
5.3.3 Cableado del disyuntor	36
5.3.4 Alimentación eléctrica y arranque	37
5.4 Comunicación	37
5.4.1 Recomendación de cable bus CAN y RS-485	37
5.4.2 Sistema de gestión de potencia bus CAN, CANshare y PMS lite	38
5.4.3 Compartición digital de carga con terceros	38
5.4.4 Comunicación con el motor vía bus CAN	39
5.4.5 Modbus RS-485 (AGC/ASC es el servidor)	39
5.4.6 Modbus RS-485 (ASC es el cliente)	41

1. Introducción

1.1 Acerca de las instrucciones de instalación

Finalidad general

Estas son las Instrucciones de instalación para el AGC 150 y ASC 150 de DEIF. Las instrucciones de instalación ofrecen información para la instalación correcta del controlador, con enfoque principal en la instalación física del equipo.

ATENCIÓN

Leer las instrucciones

Lea estas instrucciones antes de instalar el controlador para evitar lesiones físicas y daños en el equipo.

Usuarios previstos de las instrucciones de instalación

El destinatario principal de las instrucciones de instalación son las personas que montan y cablean el controlador. Podría ser útil que los diseñadores consulten las instrucciones de instalación a la hora de desarrollar los diagramas de cableado del sistema.

Lista de documentación técnica

Documento	Contenido
Ficha de producto	 Breve descripción Aplicaciones del controlador Principales características y funciones Datos técnicos Protecciones Dimensiones
Hoja de datos	 Descripción general Funciones y características Aplicaciones del controlador Tipos y variantes del controlador Protecciones Entradas y salidas Especificaciones técnicas
Manual del Proyectista	 Principios Secuencias, funciones y protecciones generales del controlador Protecciones y alarmas Configuración de parámetros de corriente alterna y valores de configuración nominales Interruptor y sincronización Regulación Características del hardware Comunicación
Instrucciones de instalación	 Herramientas y materiales Montaje Cableado mínimo para el controlador Información sobre el cableado y ejemplos

Documento	Contenido
Manual del operador	 Equipos del controlador (botones y LED) Operación del sistema Alarmas e histórico de alarmas
Tablas de Modbus	 Lista de direcciones de Modbus Direcciones del PLC Funciones correspondientes del controlador Descripciones de los códigos de función y grupos de funciones
Planos	 Plano CAD 2D, 2D PDF Archivo STEP 3D, 3D PDF EPLAN

1.1.1 Versión de software

Este documento está basado en la versión 1.20 del software del AGC 150.

1.2 Advertencias y seguridad

Seguridad durante la instalación y operación

A la hora de instalar y operar el equipo, podría tener que trabajar con corrientes y tensiones peligrosas. Por ello, la instalación deberá ser realizada exclusivamente por personal autorizado que comprenda los riesgos que supone el trabajo con equipos eléctricos.

Corrientes y tensiones activas peligrosas

No toque ningún terminal, en particular las entradas de medida de corriente alterna y los terminales de los relés, ya que esto podría provocar lesiones o la muerte.

Peligro del transformador de corriente

Descarga eléctrica y arco eléctrico

Riesgo de quemaduras y descargas eléctricas por alta tensión.

Cortocircuite todos los secundarios del transformador de corriente antes de cortar cualquier conexión del transformador de corriente al controlador.

Deshabilitar los interruptores

Deshabilitar los interruptores

Un cierre no previsto del interruptor puede causar situaciones mortales o peligrosas.

Desconecte o deshabilite los interruptores ANTES de conectar la alimentación eléctrica del controlador. No habilite los interruptores hasta DESPUÉS de realizar pruebas exhaustivas del cableado y el funcionamiento del controlador.

Deshabilitar el arranque del motor de combustión

Arranques no previsto del motor de combustión

Un cierre no previsto del motor de combustión puede causar situaciones mortales o peligrosas.

Desconecte, deshabilite o bloquee el arranque del motor de combustión (el motor de arranque y la bobina de marcha) ANTES de conectar la alimentación eléctrica del controlador. No habilite el arranque del motor de combustión hasta DESPUÉS de realizar pruebas exhaustivas del cableado y el funcionamiento del controlador.

Homologado por UL/cUL

La aceptabilidad de la instalación se determina como parte del ensamblaje final.

Si se cablea sobre el terreno en la aplicación final, debe utilizar una barrera física entre las conexiones de cableado de tensión baja y tensión más alta para garantizar que los circuitos están separados.

Configuración de fábrica

El controlador se entrega preprogramado desde fábrica con un conjunto de ajustes predeterminados. Estos ajustes están basados en valores típicos y tal vez no sean correctos para su sistema. Por tanto, debe comprobar todos los parámetros antes de utilizar el controlador.

Descarga electrostática (ESD)

Las descargas electrostáticas pueden provocar daños en los terminales de controlador. Debe proteger los terminales de las descargas electrostáticas durante la instalación. Una vez instalado y conectado el controlador, ya no es necesario adoptar tales precauciones.

Seguridad de los datos

Para minimizar el riesgo de infracciones de la seguridad de los datos:

- En la medida de los posible, evitar la exposición de los controladores y redes de controladores a las redes públicas y a Internet.
- Utilizar capas de seguridad adicionales como una red privada virtual (VPN/RPV) para el acceso remoto e instalar mecanismos cortafuegos.
- Restringir el acceso a personas autorizadas.

1.3 Información legal

Equipos de terceros

DEIF no asume ninguna responsabilidad por la instalación u operación de cualquier equipo de terceros, incluido el **grupo electrógeno**. Póngase en contacto con la**empresa proveedora del grupo electrógeno** si tiene cualquier duda acerca de la instalación u operación del grupo electrógeno.

Garantía

AVISO

Garantía

El controlador no debe ser abierto por personal no autorizado. Si de alguna manera se abre la unidad, quedará anulada la garantía.

Descargo de responsabilidad

DEIF A/S se reserva el derecho a realizar, sin previo aviso, cambios en el contenido del presente documento.

La versión en inglés de este documento siempre contiene la información más reciente y actualizada acerca del producto. DEIF no asumirá ninguna responsabilidad por la precisión de las traducciones y éstas podrían no haber sido actualizadas simultáneamente a la actualización del documento en inglés. Ante cualquier discrepancia entre ambas versiones, prevalecerá la versión en inglés.

Derechos de autor

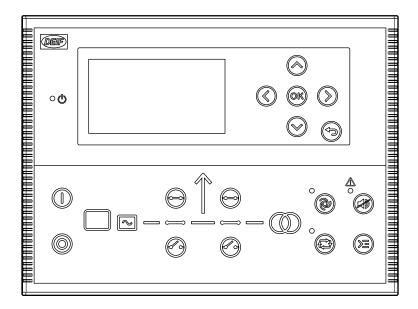
© Copyright DEIF A/S. Reservados todos los derechos.

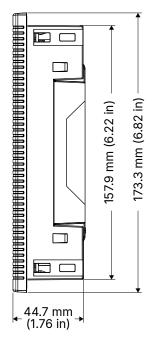
2. Descripción del producto

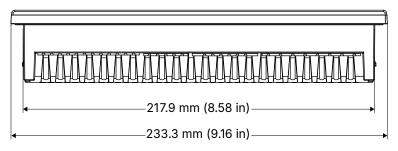
2.1 Tipos de controladores

Parámetro	Ajuste	Tipo de controlador	Software mínimo
	Controlador DG	Controlador de generador(es)	S2
	Controlador DG	Controlador autónomo del generador	S1
	Controlador de red	Controlador de red	S2
	Unidad de interruptor BTB	Controlador de interruptor acoplador de barras (BTB)	S2
	Controlador DG HYBRID	Controlador híbrido grupo electrógeno-solar	S2
	Controlador ENGINE DRIVE	Controlador de propulsión de motor de combustión	S1
	Unidad remota	Pantalla remota	Ninguna
9101	Controlador ENGINE DRIVE MARINE	Controlador de propulsión de motor de combustión para aplicaciones marinas	S1
	Controlador DG MARINE	Controlador de grupo electrógeno autónomo para aplicaciones marinas	S1
	ASC 150 Storage*	Controlador de almacenamiento de batería	S3
	ASC 150 Solar*	Controlador solar	S3
	Unidad ATS	Conmutador de transferencia automática (transición abierta)	S1
	Unidad ATS	Conmutador de transferencia automática (transición cerrada)	S2
	DG PMS LITE	Controlador PMS lite	S2

Paquetes de software y tipos de controlador


El paquete de software del controlador determina las funciones que el controlador puede utilizar.


- S1 = Autónomo
 - Puede cambiar el tipo de controlador a cualquier otro controlador que utilice software S1.
- S2 = Básico
- S3 = Extendido
 - Puede cambiar el tipo de controlador a cualquier otro tipo de controlador*.
 - * Para cambiar a un ASC 150, el controlador debe disponer de la opción de sostenibilidad (S10).
- S4 = Prémium
 - Puede cambiar el tipo de controlador a cualquier otro tipo de controlador*.
 - * Para cambiar a un ASC 150, el controlador debe disponer de la opción de sostenibilidad (S10).
 - Todas las funciones son compatibles.


Puede seleccionar el tipo de controlador en Ajustes básicos > Ajustes del controlador > Tipo.

3. Montaje

3.1 Dimensiones y peso

Dimensiones y peso	
Dimensiones	Longitud: 233.3 mm (9.16 in) Altura: 173.3 mm (6.82 in) Profundidad: 44.7 mm (1.76 in)
Abertura en cuadro	Longitud: 218.5 mm (8.60 in) Altura: 158.5 mm (6.24 in) Tolerancia: ± 0.3 mm (0.01 in)
Grosor máx. de cuadro	4.5 mm (0.18 in)
Montaje	Certificado UL/cUL: Tipo de dispositivo completo, tipo abierto 1 Certificado UL/cUL: Para uso en una superficie plana de envolvente tipo 1
Peso	0.79 kg

3.2 Herramientas y materiales

Herramientas necesarias para el montaje

Herramienta	Se utiliza para:
Equipo de seguridad	Protección personal de acuerdo con las normas locales y los requisitos
Destornillador, PH2 o plano de 5 mm	Apriete las abrazaderas de los tornillos de fijación, par de apriete 0,15 N-m (1,3 lb-in)
Pelacables, alicates y cúteres	Prepare el cableado y corte las bridas

AVISO

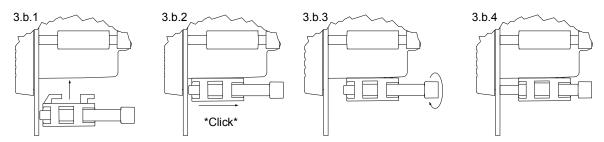
Un par de apriete excesivo dañará las abrazaderas de los tornillos y/o la carcasa del controlador

No utilice herramientas motorizadas durante la instalación.

Materiales necesarios para el montaje y el cableado

Materiales	Se utiliza para:
Cuatro abrazaderas de tornillo	Montaje del controlador en el panel frontal
Cables y conectores	Cableado de equipos de terceros a los terminales del controlador
Cable Ethernet	Conectar la comunicación del controlador entre los controladores y/o los sistemas externos
Bridas para cables	Proteger el cableado y el cable Ethernet

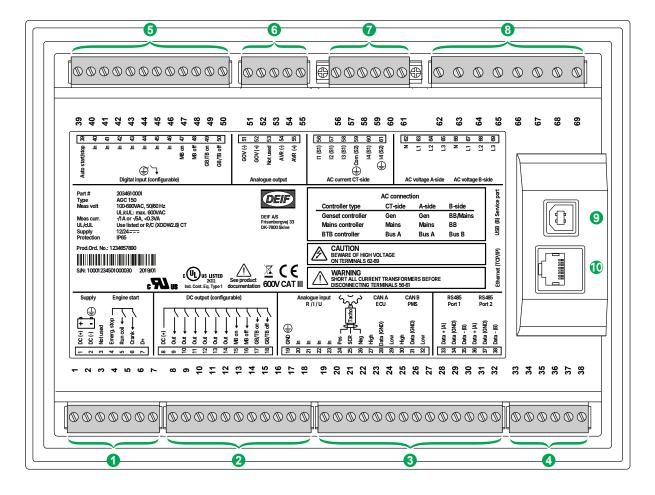
3.3 Instrucciones de montaje


Este controlador se ha concebido para su montaje en el panel frontal. Grosor máx. de panel: 4.5 mm (0.18 in).

Abertura en panel:

Anchura: 218.5 mm (8.60 in)
Altura: 158.5 mm (6.24 in)
Tolerancia: ± 0.3 mm (0.01 in)

1. Inserte el controlador en el panel.


2. Inserte las abrazaderas de tornillo:

3. Apriete las abrazaderas de tornillo a 0,2 Nm.

4. Hardware

4.1 Conexiones de lado trasero

Conexión 1: Alimentación/Arranque de motor

Terminal	Texto	Función	Datos técnicos
1	Alimentación, DC (+)	+12/24 V CC	6.5 a 36 V CC
2	Alimentación, DC (-)	0 V CC	0.3 a 30 V CC
3	No utilizado	-	-
4	Parada de emergencia	Entrda digital y alimentación para terminales 5, 6 y 7	
5	Bobina de marcha	Configurables	Máx. 3 A
6	Biela	Configurables	Máx. 3 A
7	D+		Consulte la ficha de datos para los datos técnicos

Conexión 2: Salida de corriente continua (DC)

Terminal	Texto	Función	Datos técnicos
8	Alimentación de salida digital, CC (+)		
9	Salida	Configurables	Máx. 500 mA
10	Salida	Configurables	Máx. 500 mA
11	Salida	Configurables	Máx. 500 mA

Terminal	Texto	Función	Datos técnicos
12	Salida	Configurables	Máx. 500 mA
13	Salida	Configurables	Máx. 500 mA
14	Salida	Configurables	Máx. 500 mA
15	Interruptor de red MB cerrado	Cerrar MB/TB Configurable (en función de la aplicación)	Máx. 500 mA
16	Interruptor de red MB abierto	MB/TB abierto Configurable (en función de la aplicación)	Máx. 500 mA
17	GB/TB encendido	GB/TB/BTB/ESB/PVB cerrado Configurable (en función de la aplicación)	Máx. 500 mA
18	GB/TB apagado	GB/TB/BTB/ESB/PVB abierto Configurable (en función de la aplicación)	Máx. 500 mA

Conexión 3: Entrada analógica/MPU/CANbus

Terminal	Texto	Función	Datos técnicos
19	GND	Común	Se debe realizar la toma de tierra con GND del motor
20	En la vista de	Entrada analógica R/I/U	
21	En la vista de	Entrada analógica R/I/U	
22	En la vista de	Entrada analógica R/I/U	
23	En la vista de	Entrada analógica R/I/U	
24	Pos.	Tacómetro	
25	SCR	Tacómetro	
26	Neg	Tacómetro	
27	Alta	CAN A ECU	No aislado
28	Datos (GND)	CAN A ECU	No aislado
29	Bajo	CAN A ECU	No aislado
30	Alta	CAN B PMS	Aislado
31	Datos (GND)	CAN B PMS	Aislado
32	Bajo	CAN B PMS	Aislado

Conexión 4: RS-485

Terminal	Texto	Función	Datos técnicos
33	Datos + (A)	RS-485-1	Aislado
34	Datos (GND)	RS-485-1	Aislado
35	Datos - (B)	RS-485-1	Aislado
36	Datos + (A)	RS-485-2	No aislado
37	Datos (GND)	RS-485-2	No aislado
38	Datos - (B)	RS-485-2	No aislado

Conexión 5: Entrada digital

Terminal	Texto	Función	Datos técnicos
39	En la vista de	Configurables	Solo conmutación negativa, < 100 Ω
40	En la vista de	Configurables	Solo conmutación negativa, < 100 Ω
41	En la vista de	Configurables	Solo conmutación negativa, < 100 Ω
42	En la vista de	Configurables	Solo conmutación negativa, < 100 Ω
43	En la vista de	Configurables	Solo conmutación negativa, < 100 Ω
44	En la vista de	Configurables	Solo conmutación negativa, < 100 Ω
45	En la vista de	Configurables	Solo conmutación negativa, < 100 Ω
46	En la vista de	Configurables	Solo conmutación negativa, < 100 Ω
47	Interruptor de red MB cerrado	MB/TB cerrado* Configurable (en función de la aplicación)	Solo conmutación negativa, < 100 Ω
48	Interruptor de red MB abierto	MB/TB abierto* Configurable (en función de la aplicación)	Solo conmutación negativa, < 100 Ω
49	GB/TB encendido	GB/TB/BTB/ESB/PVB cerrado* Configurable (en función de la aplicación)	Solo conmutación negativa, < 100 Ω
50	GB/TB apagado	GB/TB/BTB/ESB/PVB abierto* Configurable (en función de la aplicación)	Solo conmutación negativa, < 100 Ω

NOTA * Alternativamente, si necesita supervisión de rotura de cable, puede utilizar la entrada múltiple 20/21/22/23.

Conexión 6: Salida analógica

	•		
Terminal	Texto	Función	Datos técnicos
51	GOV (-)	Salida tensión o PWM	Aislado
52	Regulador de velocidad GOV (+)	Salida tensión o PWM	Aislado
53	No utilizado	-	-
54	AVR (-)	Salida de tensión	Aislado
55	AVR (+)	Salida de tensión	Aislado

Conexión 7: Corriente alterna lado CT

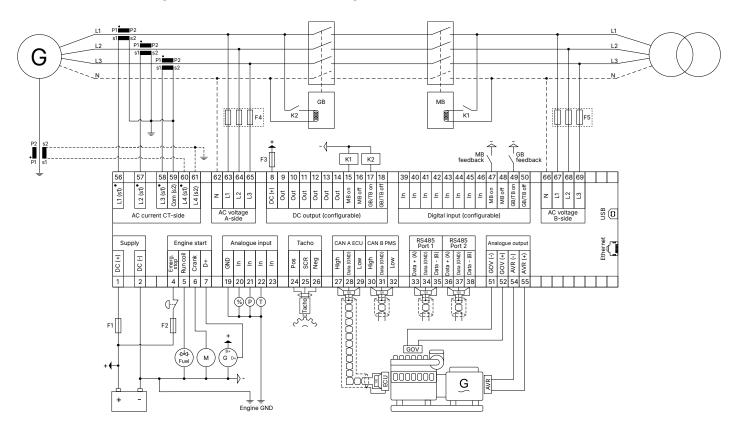
Terminal	Texto	Función	Datos técnicos
56	L1 (S1)		
57	L2 (S1)		
58	L3 (S1)		
59	Com (S2)	Común	Se debe conectar al GND del bastidor
60	L4 (S1)	Neutro, tierra o alimentación de red/ conexión/barra colectora	
61	L4 (S2)	Neutro, tierra o alimentación de red/ conexión/barra colectora	Se debe conectar al GND del bastidor

Conexión 8: Medición de tensión CA

Terminal	Texto	Función	Datos técnicos
62	N	Lado A	
63	L1	Lado A	
64	L2	Lado A	
65	L3	Lado A	
66	N	Lado B	
67	L1	Lado B	
68	L2	Lado B	
69	L3	Lado B	

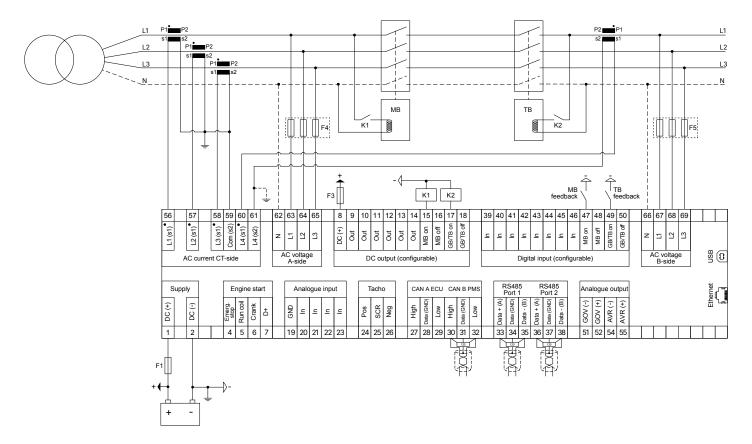
Conexión 9: Conexión a PC

Descripción	Función	Datos técnicos
Conexión USB	Puerto de servicio	USB B

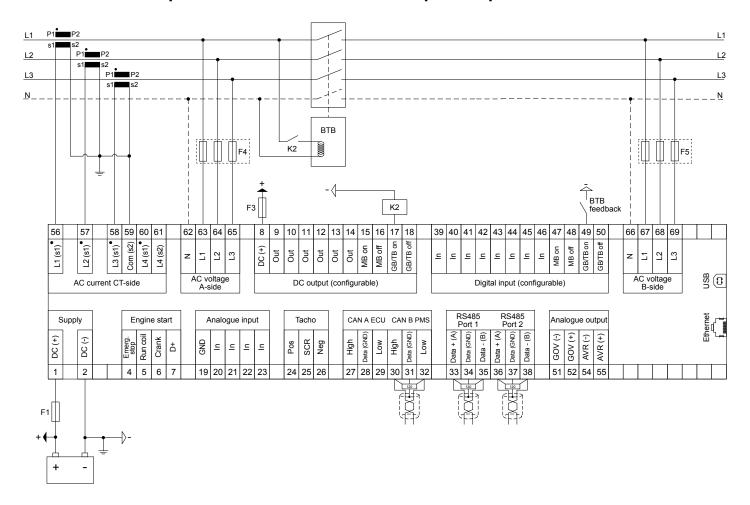

Conexión 10: Conexión Modbus

Descripción	Función	Datos técnicos
RJ45	Conexión Modbus TCP/IP	Ethernet

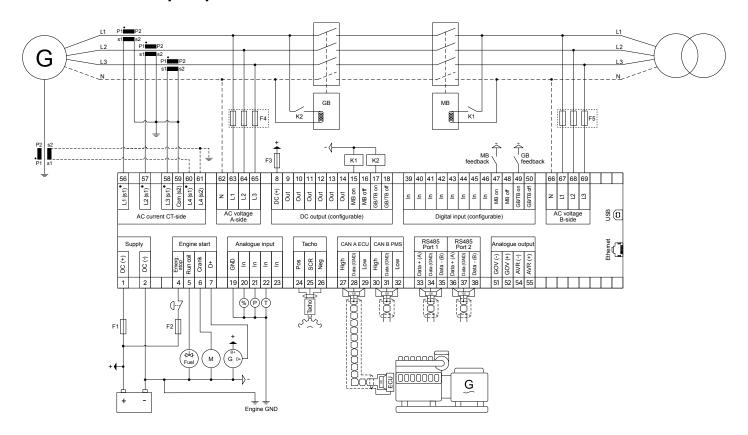
5. Cableado


5.1 Descripción general del cableado

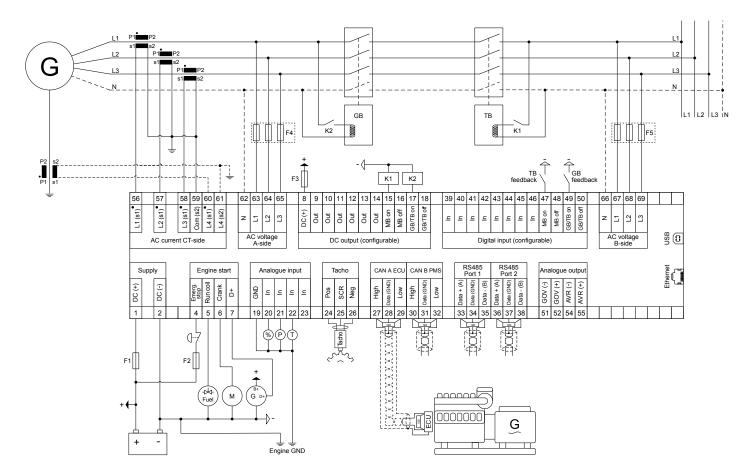
5.1.1 Cableado típico del controlador del generador


- F1: Fusible con retardo máx. CC 2 A/interruptor MCB, curva c
- F2: Fusible con retardo máx. CA 6 A/interruptor MCB, curva c
- F3: Fusible con retardo máx. CC 4 A/interruptor MCB, curva b
- F4, F5: Fusible con retardo máx. CA 2 A/interruptor MCB, curva c

5.1.2 Cableado típico del controlador de red


- F1: Fusible con retardo máx. CC 2 A/interruptor MCB, curva c
- F3: Fusible con retardo máx. CC 4 A/interruptor MCB, curva b
- F4, F5: Fusible con retardo máx. CA 2 A/interruptor MCB, curva c

5.1.3 Cableado típico de un controlador de interruptor acoplador de barras (BTB)

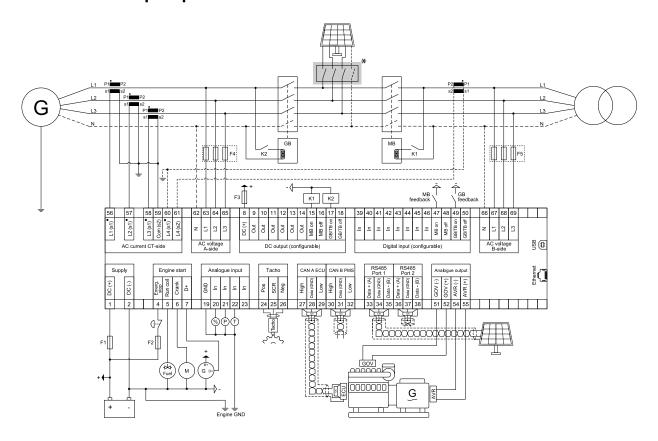

- F1: Fusible con retardo máx. CC 2 A/interruptor MCB, curva c
- F3: Fusible con retardo máx. CC 4 A/interruptor MCB, curva b
- F4, F5: Fusible con retardo máx. CA 2 A/interruptor MCB, curva c

5.1.4 Cableado típico para un controlador autónomo

- F1: Fusible con retardo máx. CC 2 A/interruptor MCB, curva c
- F2: Fusible con retardo máx. CA 6 A/interruptor MCB, curva c
- F3: Fusible con retardo máx. CC 4 A/interruptor MCB, curva b
- F4, F5: Fusible con retardo máx. CA 2 A/interruptor MCB, curva c

5.1.5 Cableado típico de un controlador autónomo marino

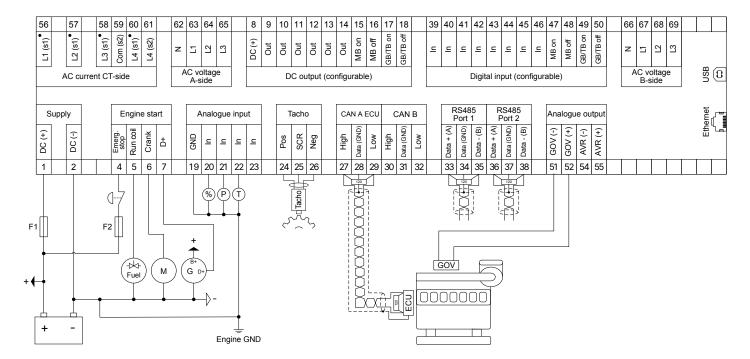
- F1: Fusible con retardo máx. CC 2 A/interruptor MCB, curva c
- F2: Fusible con retardo máx. CA 6 A/interruptor MCB, curva c
- F3: Fusible con retardo máx. CC 4 A/interruptor MCB, curva b
- F4, F5: Fusible con retardo máx. CA 2 A/interruptor MCB, curva c


Cableado típico de un controlador autónomo marino con caja GS para aislamiento galvánico

NOTA * Una caja GS brinda aislamiento galvánico para ambos conjuntos de mediciones de tensión.

Véase diagrama anterior para obtener información sobre fusibles.

5.1.6 Cableado típico para controlador híbrido



NOTA * Interruptor PV opcional.

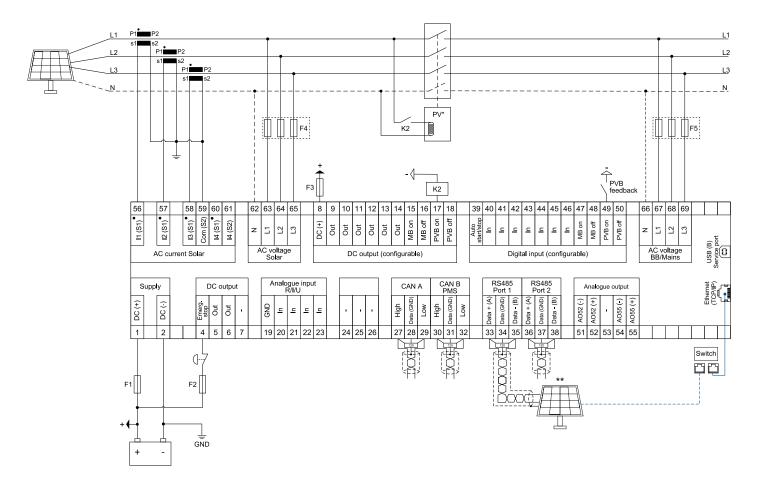
NOTA El puerto RS-485 1 tiene aislamiento galvánico, y el puerto RS-485 2 no. Se recomienda el puerto 1 para la comunicación con el inversor solar.


- F1: Fusible con retardo máx. CC 2 A/interruptor MCB, curva c
- F2: Fusible con retardo máx. CA 6 A/interruptor MCB, curva c
- F3: Fusible con retardo máx. CC 4 A/interruptor MCB, curva b
- F4, F5: Fusible con retardo máx. CA 2 A/interruptor MCB, curva c

5.1.7 Cableado típico de controlador de propulsión por motor de combustión

- F1: Fusible con retardo máx. CC 2 A/interruptor MCB, curva c
- F2: Fusible con retardo máx. CA 6 A/interruptor MCB, curva c

5.1.8 Cableado habitual de un controlador de almacenamiento


NOTA * ES: Disyuntor ES opcional.

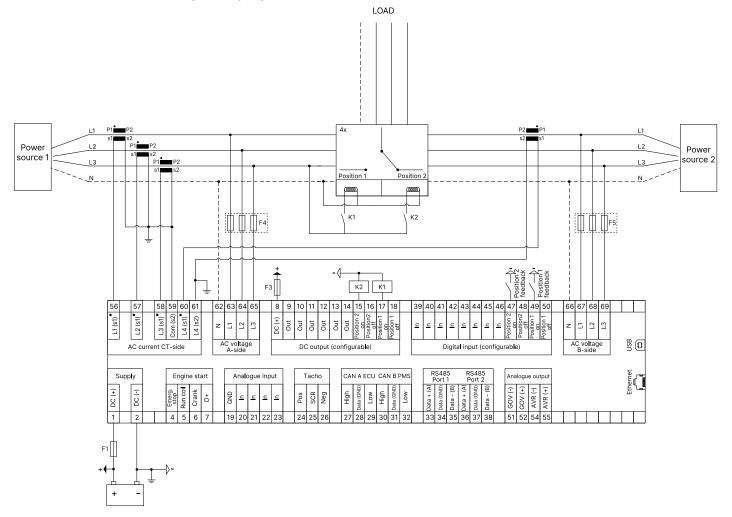
* BMS y PCS: El controlador puede utilizar RS-485 o comunicación Ethernet. La comunicación RS-485 se realizarse en cadena margarita desde un puerto.

NOTA El puerto RS-485 1 tiene aislamiento galvánico, y el puerto RS-485 2 no.

- F1: Fusible con retardo máx. CC 2 A/interruptor MCB, curva c
- F2: Fusible con retardo máx. CA 6 A/interruptor MCB, curva c
- F3: Fusible con retardo máx. CC 4 A/interruptor MCB, curva b
- F4, F5: Fusible con retardo máx. CA 2 A/interruptor MCB, curva c

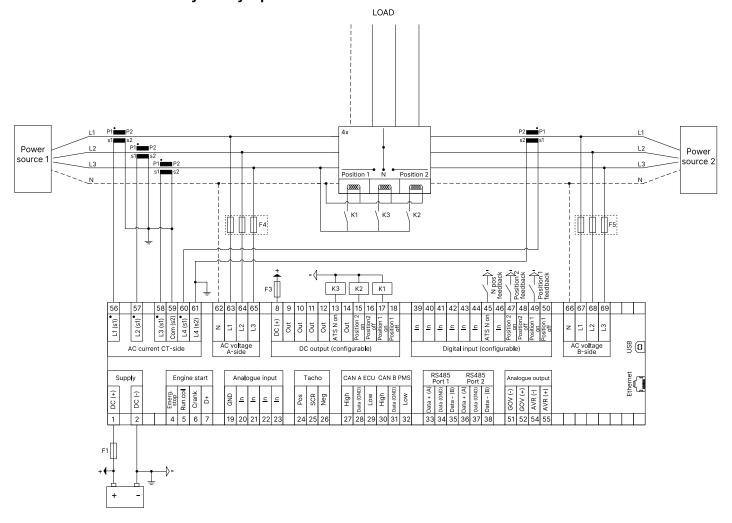
5.1.9 Cableado habitual de un controlador solar

NOTA * Disyuntor PV: Disyuntor PV opcional.

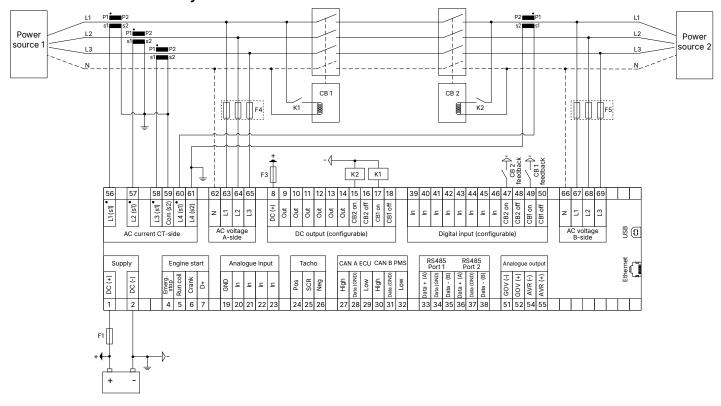

NOTA ** Comunicación con inverter PV: El controlador puede utilizar RS-485 o comunicación Ethernet.

NOTA El puerto RS-485 1 tiene aislamiento galvánico, y el puerto RS-485 2 no. Se recomienda el puerto 1 para la comunicación con el inversor solar.

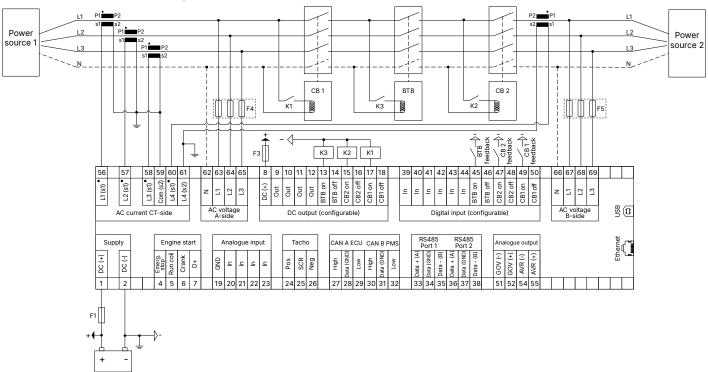
- F1: Fusible con retardo máx. CC 2 A/interruptor MCB, curva c
- F2: Fusible con retardo máx. CA 6 A/interruptor MCB, curva c
- F3: Fusible con retardo máx. CC 4 A/interruptor MCB, curva b
- F4, F5: Fusible con retardo máx. CA 2 A/interruptor MCB, curva c


5.1.10 Cableado típico de un controlador de interruptor acoplador de barras (ATS)

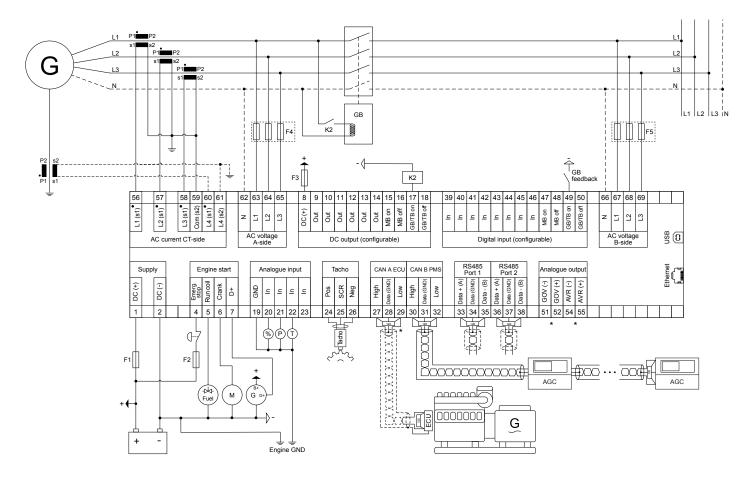
Cableado habitual con 1 disyuntor y 2 posiciones


- F1: Fusible con retardo máx. CC 2 A/interruptor MCB, curva c
- F3: Fusible con retardo máx. CC 4 A/interruptor MCB, curva b
- F4, F5: Fusible con retardo máx. CA 2 A/interruptor MCB, curva c

Cableado habitual con 1 disyuntor y 3 posiciones


Véase diagrama anterior para obtener información sobre fusibles.

Cableado habitual con 2 disyuntores


Véase diagrama anterior para obtener información sobre fusibles.

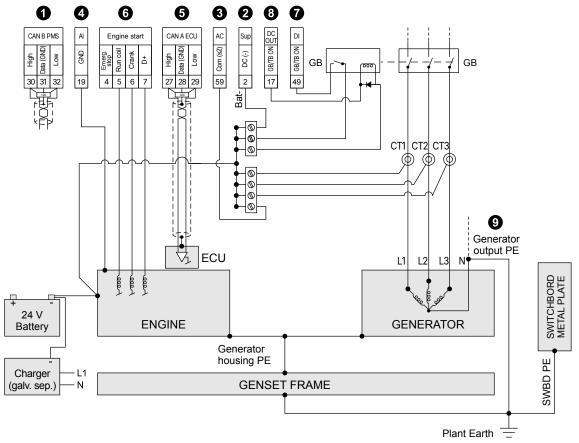
Cableado habitual con 3 disyuntores

Véase diagrama anterior para obtener información sobre fusibles.

5.1.11 Cableado habitual de un controlador PMS lite

- F1: Fusible con retardo máx. CC 2 A/interruptor MCB, curva c
- F2: Fusible con retardo máx. CA 6 A/interruptor MCB, curva c
- F3: Fusible con retardo máx. CC 4 A/interruptor MCB, curva b
- F4, F5: Fusible con retardo máx. CA 2 A/interruptor MCB, curva c

NOTA * El diagrama muestra la regulación del regulador de velocidad EIC. Como alternativa, se puede regular el regulador y el AVR utilizando la salidas analógicas.


5.1.12 Directrices de cableado: mejores prácticas para la conexión a tierra

En el controlador, la mayoría de los puertos de entrada/salida no están separados galvánicamente de la CC- (terminal 2). Por lo tanto, es importante seguir estas directrices de cableado para conseguir:

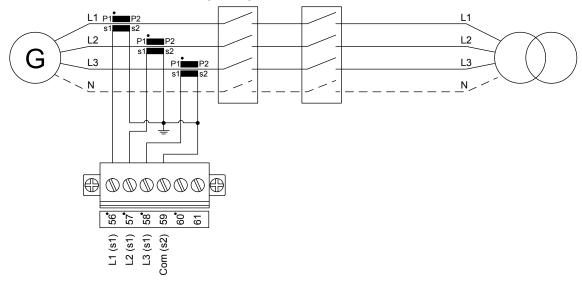
- · Lecturas fiables de los sensores.
- Medición precisa de la tensión y corriente de CA.
- La mejor protección contra rayos (impulsos de pico) y otras faltas a tierra.

Las entradas para tensión de CA, corriente de CA y las entradas multifunción analógicas tienen todas una medición equilibrada de las señales. Para obtener mediciones fiables, es importante mantener la diferencia de potencial bajo a CC-(terminal 2). Si la diferencia de potencial es demasiado alta, las mediciones pueden ser inexactas y, en casos graves, dañar los circuitos de entrada.

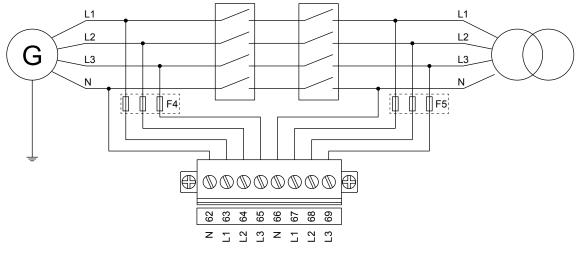
Ejemplo: Configuración típica de conexión a tierra

- 1. El puerto CAN-B PMS (terminales 30, 31 y 32) se utiliza normalmente con cables largos que conectan varios grupos electrógenos.
 - Utilice un cable CAN de par trenzado (120R) apantallado.
 - Conecte la pantalla a datos (GND) (terminal 31) en todos los controladores. CAN-B PMS dispone de separación galvánica, por lo que no se crean bucles de masa.
 - No conecte la pantalla a PE.
 - No instale cables CAN permitiendo que cuelguen libremente. Móntelos como parte de una parte fija de la instalación, por ejemplo, en bandejas de cables.
- 2. La alimentación eléctrica CC- (terminal 2) debe estar conectada a BAT- (en este ejemplo, el bloque de motor).
- 3. COM S2 (terminal 59) es la entrada común para los transformadores de corriente. COM S2 (terminal 59) debe conectarse a BAT- o al grupo electrógeno PE para mantener la diferencia de tensión a CC- (terminal 2) baja (en este ejemplo, el TC tiene el mismo punto de conexión BAT- que el terminal 2).
- 4. La entrada analógica GND (terminal 19) es la referencia para las mediciones de entrada analógica. GND (terminal 19) debe disponer de un punto de conexión BAT-/PE como la toma de tierra del sensor. La diferencia de potencial al terminal 2 debe ser baja (en este ejemplo, el terminal 19 está conectado al bloque del motor para las mejores lecturas).

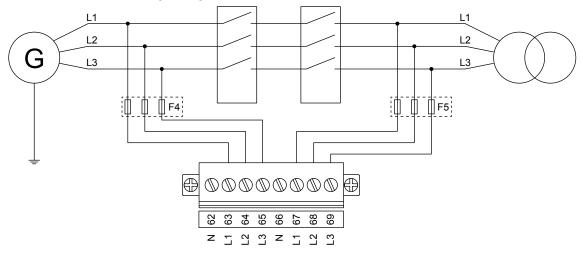
- 5. El puerto CAN A ECU (terminales 27, 28 y 29) se suele conectar a la ECU del motor con un cable corto. No hay separación galvánica en el puerto CAN A ECU.
 - Utilice un cable CAN de par trenzado (120R) apantallado.
 - Conecte la pantalla a los datos (GND) (terminal 28) para mejorar la inmunidad a transitorios de ráfaga (EFT).
 - Conecte la pantalla a la ECU del motor de la forma indicada por el fabricante del motor.
- 6. Las señales en la bobina de marcha (terminal 5), arranque (terminal 6) y D+ (terminal 7) deben conectarse a BAT- en el bloque del motor como referencia. Estos terminales no se suministran internamente, sino a través de la parada de emergencia. Esto significa que BAT+ debe conectarse a través de la parada de emergencia (terminal 4).
- 7. Las entradas digitales (terminales 39 a 50) deben tener BAT- como referencia de tierra. El punto de conexión preferido para la referencia está cerca del punto de conexión BAT- para CC- (terminal 2).
- 8. Las salidas CC (terminales 9 a 18) deben tener la misma referencia de tierra que las entradas digitales.
- 9. Conecte Neutro/PE de los generadores directamente la tierra de la planta. Esto evita que los cortocircuitos y los transitorios de alta energía del lado de la red causen graves daños al sistema.


NOTA Todo el cableado PE y BAT- debe realizarse con cables gruesos y cortos.

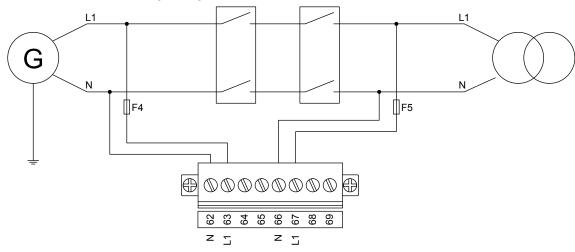
5.2 Conexiones de corriente alterna


El controlador se puede cablear en configuración trifásica, monofásica o fase partida. Los parámetros para configurar la conexión de corriente alterna se encuentran en **Ajustes > Ajustes básicos > Configuración de medición > Conexión del cableado > Configuración de corriente alterna**.

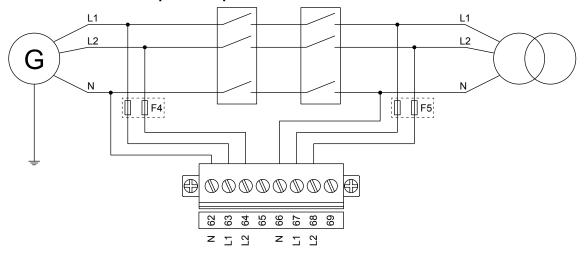
NOTA Póngase en contacto con el fabricante de cuadros eléctricos (cuadrista) para obtener información sobre el cableado necesario para la aplicación específica. A continuación encontrará las recomendaciones de cableado.


Transformadores de corriente para aplicación trifásica

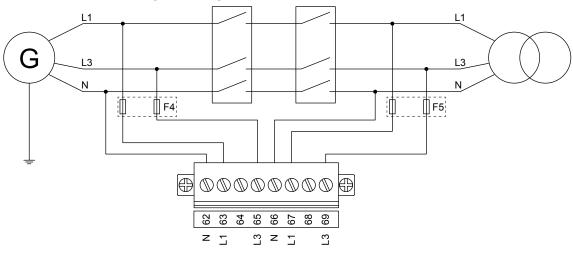
Mediciones de tensión para aplicación trifásica (4 cables)



Mediciones de tensión para aplicación trifásica (3 cables)

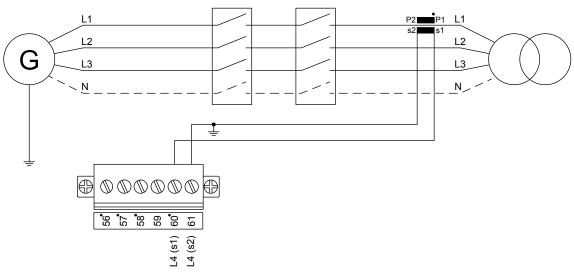


Cuando se utilicen sistemas de distribución de tres fases, el conductor de neutro (N) se necesita únicamente si se trata de un sistema de tres fases + neutro. Si el sistema de distribución es trifásico sin neutro, no conecte los terminales 62 y 66.

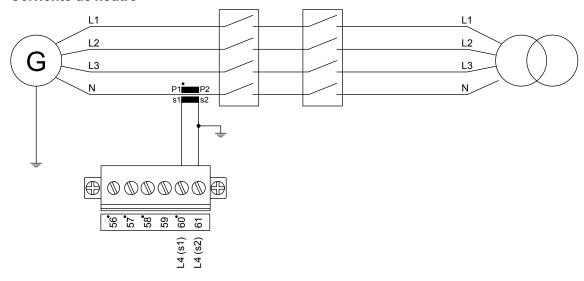

Mediciones de tensión para aplicación monofásica

Mediciones de tensión para fase partida L1/L2

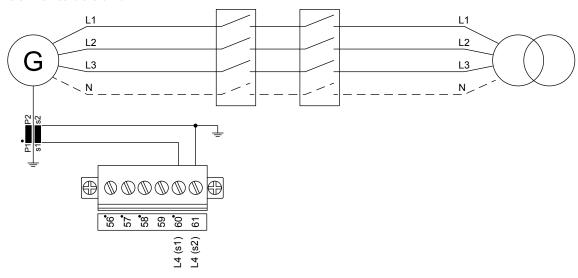
Mediciones de tensión para fase partida L1/L3

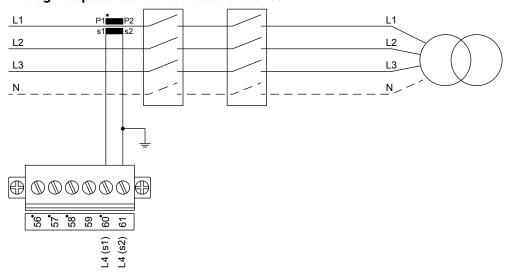


F4, F5: 2 A CA máx. fusible/MCB, curva en c


5.2.1 Corriente L4

Los terminales L4 se pueden utilizar para medir la corriente alterna. Son posibles las siguientes configuraciones (en función del tipo de controlador).


Potencia de red


Corriente de neutro

Corriente de tierra

Entrega de potencia del controlador de red

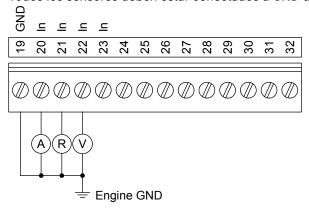
5.2.2 Puesta a tierra del transformador de intensidad

La conexión a tierra del transformador de corriente debe realizarse en la conexión s2.

iPELIGRO!

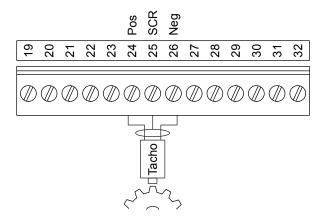
No realizar una puesta a tierra del transformador de corriente podría resultar en lesiones o la muerte

Asegúrese de que cada transformador de corriente dispone de puesta a tierra.

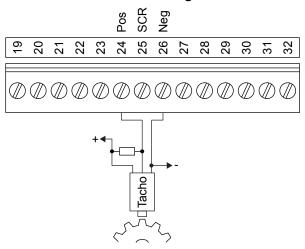

5.2.3 Fusibles de medición de tensión

Si los cables se deben proteger con fusibles, utilice fusibles de retardo de 2 A máx., dependiendo de los cables que se deseen proteger.

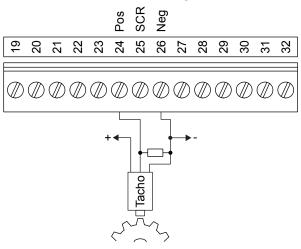
5.2.4 Entradas analógicas

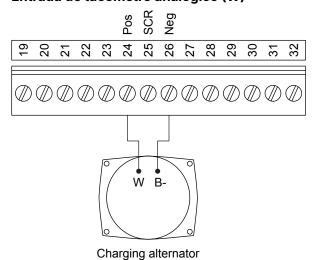

Entrada analógica

Todos los sensores deben estar conectados a GND del motor de combustión.

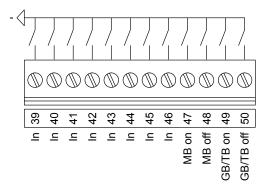


Entrada de tacómetro analógico (MPU)

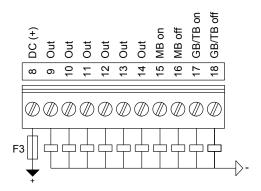

Conecte la pantalla de cable al terminal 25 (SCR). No realice una toma de tierra del cable.


Entrada de tacómetro analógico (NPN)

Entrada de tacómetro analógico (PNP)

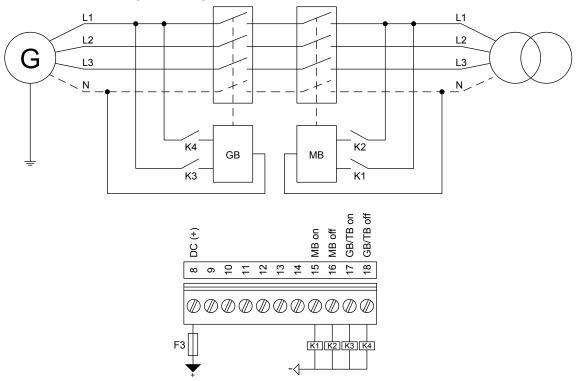


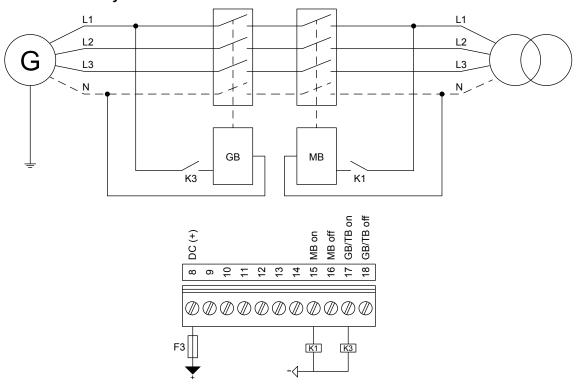
Entrada de tacómetro analógico (W)


5.3 Conexiones de corriente continua (CC)

5.3.1 Entradas digitales

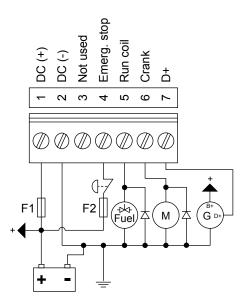
Para cumplir la norma EN60255, cuando el cableado supera los 10 m, se debe conectar un diodo 4007 en cada entrada.


5.3.2 Salidas digitales


Fusible F3: Fusible con retardo máx. CC 4 A/interruptor MCB, curva b

5.3.3 Cableado del disyuntor

Cableado del interruptor de impulsos



Cableado del disyuntor continuo

Fusible F3: Fusible con retardo máx. CC 4 A/interruptor MCB, curva b

5.3.4 Alimentación eléctrica y arranque

Fusibles

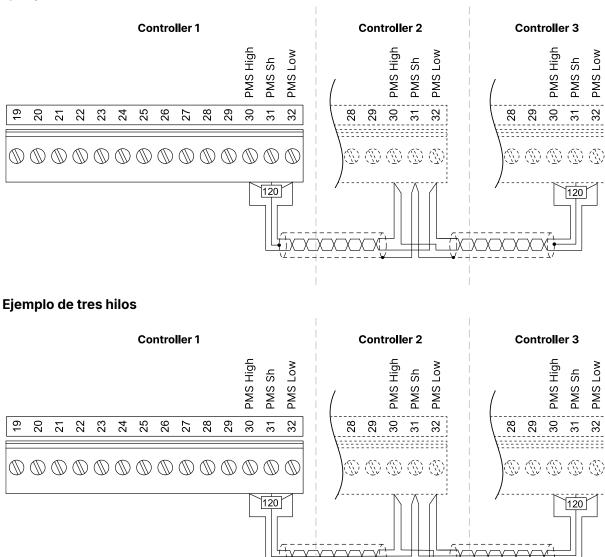
- F1: Fusible con retardo máx. CC 2 A/interruptor MCB, curva c
- F2: Fusible con retardo máx. CA 6 A/interruptor MCB, curva c

NOTA No olvide montar los diodos de libre circulación.

5.4 Comunicación

5.4.1 Recomendación de cable bus CAN y RS-485

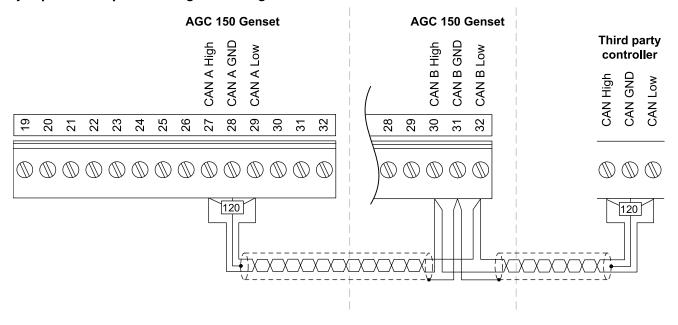
Utilice un cable trenzado A blindado. Use una resistencia de 120 ohmios en cada extremo. Es aceptable el cableado que utilice un cable de dos hilos. Lo ideal es utilizar un cable de tres hilos.

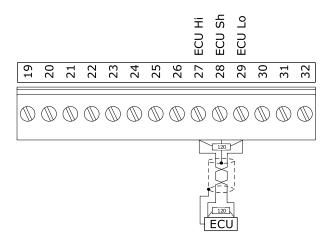

NOTA Si los terminales del dispositivo no están galvanicamente separados, conecte a tierra la pantalla del cable en ese extremo.

NOTA El sistema no debe tener más de una conexión a tierra para la pantalla del cable.

DEIF recomienda este cable: Belden 3105A o equivalente. 22 AWG (0.6 mm \varnothing , 0.33mm²) par trenzado, blindado, <40 m Ω /m, cobertura mínima del blindaje 95 %. El tipo de cable es especialmente importante si la longitud total de la línea supera los 30 m.

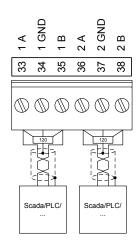
5.4.2 Sistema de gestión de potencia bus CAN, CANshare y PMS lite


Ejemplo de dos hilos


5.4.3 Compartición digital de carga con terceros

Utilice los terminales del bus CAN para conectar en serie los controladores AGC 150 y los controladores de terceros para la compartición digital de carga.

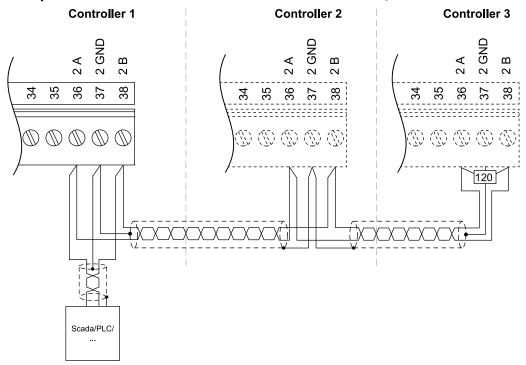
Ejemplo de compartición digital de carga con terceros mediante interfaces de bus CAN



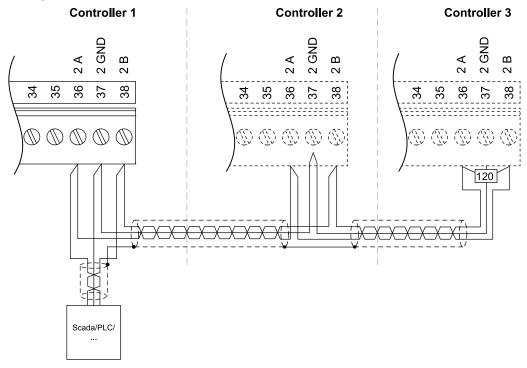
5.4.4 Comunicación con el motor vía bus CAN

Para cumplir la norma EN60255, cuando el cableado supera los 10 mm, el terminal 28 debe conectarse a GND.

5.4.5 Modbus RS-485 (AGC/ASC es el servidor)

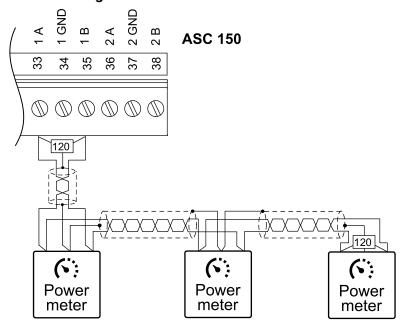


El puerto RS-485 1 tiene aislamiento galvánico, y el puerto RS-485 2 no.


NOTA Si no hay una resistencia interna entre los terminales Scada/PLC/..., instale una resistencia externa de 120 Ω .

Para cumplir la norma EN60255, cuando el cableado supera los 10 m, los terminales 34 y 37 deben conectarse a GND.

Múltiples controladores conectados a SCADA/PLC (2 hilos)



Múltiples controladores conectados a SCADA/PLC (3 hilos)

5.4.6 Modbus RS-485 (ASC es el cliente)

Cadenas margarita de vatímetro

El puerto RS-485 1 tiene aislamiento galvánico, y el puerto RS-485 2 no. Se recomienda el puerto 1 para la comunicación con los medidores de potencia.

Puede colocar vatímetros en cadena margarita si son del mismo tipo. También puede incluir los vatímetros de grupo electrógeno* y red eléctrica en la misma cadena margarita, incluso si son de tipos diferentes.

Para cumplir la norma EN60255, cuando el cableado supera los 10 m, los terminales 34 y 37 deben conectarse a GND.

Más información

* Un controlador de grupo electrógeno externo también puede actuar como vatímetro. Consulte **Mediciones de potencia** en la nota de aplicación **Compatibilidad híbrida DEIF** para los vatímetros y controladores de grupo electrógeno compatibles.